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Abstract

The core of the problem discussed in this paper is the following: the Church-
Turing Thesis states that Turing Machines formally explicate the intuitive
concept of computability. The description of Turing Machines requires de-
scription of the notation used for the input and for the output. Providing
a general definition of notations acceptable in the process of computations
causes problems. This is because a notation, or an encoding suitable for a
computation, has to be computable. Yet, using the concept of computation,
in a definition of a notation, which will be further used in a definition of the
concept of computation yields an obvious vicious circle. The circularity of
this definition causes trouble in distinguishing on the theoretical level, what
is an acceptable notation from what is not an acceptable notation, or as it is
usually referred to in the literature, “deviant encodings”.

Deviant encodings appear explicitly in discussions about what is an ade-
quate or correct conceptual analysis of the concept of computation. In this
paper, I focus on philosophical examples where the phenomenon appears
implicitly, in a “disguised” version. In particular, I present its use in the
analysis of the concept of natural number. I also point at additional phe-
nomena related to deviant encodings: conceptual fixed points and apparent
“computability” of uncomputable functions. In parallel, I develop the idea
that Carnapian explications provide a much more adequate framework for
understanding the concept of computation, than the classical philosophical
analysis.
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deviant encoding, computational structuralism, conceptual engineering,
explications, the Church-Turing thesis

Introduction1

The core of the problem discussed in this paper is the following: the2

Church-Turing Thesis (CTT) states that Turing Machines formally explicate3

the intuitive concept of computability. The description of Turing Machines4

requires description of the notation used for the input and for the output.5

The notation used by Turing in the original account and also notations used6

in contemporary handbooks of computability all belong to the most known,7

common, widespread notations, such as the standard Arabic notation for8

natural numbers, the binary encoding of natural numbers or the stroke no-9

tation. The choice is arbitrary and left unjustified. In fact, providing such10

a justification and providing a general definition of notations, which are ac-11

ceptable for the process of computations, causes problems. This is because12

a notation or an encoding suitable for a computation, has to be computable.13

Yet, using the concept of computation in a definition of a notation, which14

will be further used in a definition of the concept of computation yields an15

obvious vicious circle.16

I use the expression “deviant encoding” to refer to a collection of phe-17

nomena related to the impossibility to provide a non-circular account of how18

to distinguish an acceptable notation (i.e., omega-sequence that is an a priori19

potential subject of computation) from a non-acceptable notation.20

Deviant encodings appear more or less explicitly in discussions about what21

is an adequate or correct conceptual analysis of the concept of computation22

Shapiro (1982 [23]), Rescorla (2007 [20], 2012 [21]), Copeland & Proudfoot23

(2010 [3]), Quinon (2014 [16]). Its exact form depends on the underlying24

picture of mathematics that a given author is working with (realism, nomi-25

nalism, etc.). Quinon 2018 ([17]) presents an analysis of how three simplified26

standpoints in philosophy of mathematics deal with the problem of deviant27

encodings. In Section 1, I present an overview of the results from this paper28

and I also point out to possible further steps that can be taken in the formal29

analysis of the concept of computation. In Section 2, I focus on my main30

objective in this paper, that is philosophical examples where the phenomenon31

of deviant encodings appears implicitly. I start by analysing those examples32

where deviant encodings appear in an implicit manner in the analysis of the33
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concept of natural number. Thus, I present the position called “computa-34

tional structuralism”. In Section 3 and Section 4 I point at additional35

phenomena related implicitly to deviant encodings: conceptual fixed points36

and apparent “computability” of uncomputable functions. Finally, in the37

conclusions, I claim that the method of Carnapian explications, introduced38

already along the lines earlier in the text, provides a much more adequate39

framework for understanding the concept of computation, than the classical40

philosophical analysis.41

The paper has a rather sketchy character and instead of going into in-42

depth analysis of one phenomenon, intentionally it only skims the surface of a43

multiplicity of problems related to inherent circularity of such mathematical44

concepts as natural number or computation. My intention is to emphasize45

points worth further exploring rather than offer trustworthy solutions.46

1. Deviant encodings47

The expression “deviant encoding” - as used in this paper - covers all sort48

of limitative phenomena related to the impossibility of providing a fully for-49

mal non-circular account of an acceptable notation. Deviations refer to non-50

computable sequences that cannot be distinguished within the general formal51

context from sequences that are computable and can be used in computa-52

tions. In this paper, I use the expression “deviant encoding” independently53

of the ontological framework within which natural numbers are understood.54

When the picture gets more fine-grained, deviant encodings can be divided55

in several categories.56

Quinon (2018 [17]) proposes a taxonomy of the “deviation phenomena”57

that occur while defining the concept of computation. Analyses are con-58

ducted for a simplified framework where:59

• on the syntactic level there are uninterpreted inscriptions, where func-60

tions are string-theoretical generating string values from string argu-61

ments;62

• on the semantic level there are interpretations that can range from63

the conceptual content ascribed to initially uninterpreted symbols, to64

Platonic abstract objects, and where functions are number-theoretical65

sending numbers to numbers;66

• between the two levels there is defined a function of denotation.67
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Deviations occur on each level. Thus, there exist “deviant encodings” devia-68

tions that happen on the syntactic level; “deviant semantics” deviations that69

happen on the semantic level; “unacceptable denotation function” deviations70

of the denotation function.71

The three-layer picture is inspired by Shapiro (1982 [23]) who searches for72

an adequate account of what is an “acceptable notation”. Shapiro calls “no-73

tation” a syntactic sequence of numerals together with a denotation function.74

This is definitely more handy in his context, as he considers only computable75

sequences of inscriptions. Shapiro’s concern is focused on defining adequate76

ways of associating sequences of numerals with semantical values of natu-77

ral numbers in such a way that string-theoretic functions have unambiguous78

number-theoretic counterparts.79

Rescorla (2007 [20]) opposes “acceptable notations” in Shapiro’s sense,80

to what he calls “deviant notations”, and in this context speaks of denota-81

tion functions which associate numerals (symbolic representations of natural82

numbers) to natural numbers (abstract entities) in a non-computable way.83

There is a continuum of such mappings. In my terminology proposed above,84

Rescorla’s picture comprises all three types of deviations.85

Copeland and Proudfoot (2010 [3]) indicated one of the reasons why de-86

viant encodings might appear in the process of computation, and how using87

a deviant encoding leads to computing of an uncomputable function. The88

authors claim that a deviant encoding happens when the omniscient pro-89

grammer “winks at us” to let us know when the number of Turing Machine90

(from some standard encoding of Turing Machines), which is being currently91

processed by some sort of Halting Machine (a machine computing which92

Turing Machines stop on an input 0), refers to a machine that stops.93

The basic idea of a deviant encoding is easily illustrated. You94

can give the correct answer to any Yes/No question that I ask95

you, if it is arranged in advance that I will wink at you (as I ask96

the question) if and only if the correct answer is Yes. Likewise,97

a computer is able to answer any and every question if the pro-98

grammer is permitted to code the answer into the presentation99

of the question. [3, page 247]100

In this way, the Halting Machine computes the halting function, which is101

an uncomputable function. The “wink” of the omniscient programmer gets102

encoded in the syntactic structure of the numerals: the numerals representing103
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machines that stop, have a special form, – for instance – are even (their104

general syntactical form can be reduced to “2n” where “n” is any numeral).105

This understanding of what are deviant encodings is clearly different from106

what I understand by deviant encodings, as the authors mean by a deviant107

encoding such a standard enumeration of Turing Machines where the encod-108

ing is enriched by an extra-formal feature impersonated by the omniscient109

programmer1 This is a specific case of a more general problem where deviant110

encodings refer to encodings representing natural numbers. There obviously111

are some similarities. The authors themselves observe, while referring to112

work of Rescorla, their understanding of what are deviant encodings, reminds113

— not only by name — of the deviant encodings that Rescorla or Shapiro114

speak about. Certainly, deviant encodings both in the sense of Copeland115

and Proudfoot, and in the sense of Rescorla, relate to such a notation that116

enables computing uncomputable functions. The notation is engineered by117

the omniscient programmer in the case of Copeland and Proudfoot, and is118

a result of the impossibility to distinguish computable from non-computable119

sequences, in the case of Rescorla. Also in both cases, deviant encodings120

lead us towards realist bases: the omniscient programmer magically knows121

which Turing Machines (under, it seems, a standard encoding) stop in the122

case of Copeland and Proudfoot; a realist insight into what are natural num-123

bers – under Rescorla reading – is necessary to distinguish deviant semantics124

from acceptable semantics (which in its turn enables making sure that the125

denotation function is acceptable, and that, in consequence, the syntactical126

encoding of natural numbers is acceptable).127

There are two natural ways of developing the project of analysing the128

concept of deviant encodings started in Quinon (2018 [17]). The first way129

consists in studying the concept of computation as used in specific branches130

of philosophy of mathematics. For instance, it will be interesting to look131

closer which kind of solution for the definition of computation is adopted132

in Platonism, what can be done in constructivism, or whether fictionalism,133

that assumes that no mathematical objects exist, is also confronted with134

the problem of deviant encodings. The second way consists in looking at135

various intensionally different models of computation and analyse in which136

form the vicious circle appears in them. There are multiple formal models137

1Most possibly the omniscient programmer can be formalised in terms of a Turing
oracle.
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of computation. All formal models of computation can be proved to be138

extensionally equivalent: they capture the same functions, such as “identity”,139

or “the next element of the sequence”. However, models of computation differ140

intensionally : computations on abstract natural numbers are intensionally141

different from computations performed by a machine using concrete electric142

signals.143

1.1. Deviant encodings and various philosophical standpoints144

Quinon (2018 [17]) hypothesizes that the vicious circle persists indepen-145

dently of the philosophical standpoint. The author provides an analysis of146

following standpoints:147

• Purely mechanical/syntactical approaches (nominalism, entwined math-148

ematical concepts);149

• Notations have meanings (mild realism);150

• Semantics comes first (radical realism, platonic insight).151

For instance, in its simplest form the problem presents itself as follows:152

The problem in its purely syntactical version can be formulated153

as follows. In a definition of Turing computability, one of the154

aspects that needs to be clarified is the characterization of nota-155

tion that can be used as an input for a machine to process. If156

a Turing Machine is supposed to explicate the intuitive concept157

of computability it is necessary to explain, which sequence of nu-158

merals can be used as an input without the use of the concept159

of computability. That means, we cannot simply say: “sequences160

that can be used as input are the computable ones” as we have161

not yet defined what it means “to be computable”. (Quinon 2018162

[17])163

Its more complex occurrence can be found in an interesting case of the Se-164

mantical Halting Problem. The Semantical Halting Problem was introduced165

in the context of deviant encodings in (van Heuveln 2000 [28]). Imagine166

you have encoded Turing machines with some standard non-deviant encod-167

ing, and that you believe that symbols have meanings or interpretations. It168

can happen that even if your syntax is generated in a recursive manner, your169
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semantics is not following any recursive rules. The Halting Machine that pro-170

cesses encodings of Turing Machines is designed to process information on171

syntax in an algorithmic manner. If inputed with a given non-standard enu-172

meration of Turing machines, the machine will process those non-computable173

encodings as it were the standard notation. Again, there is no effective way174

of defining which semantics are acceptable and which are deviant.175

To give an example of a philosophical position outside the strict theoret-176

ical context, the phenomenon of deviant encodings concerns as well propo-177

nents of concrete computations.178

In our ordinary discourse, we distinguish between physical sys-179

tems that perform computations, such as computers and calcu-180

lators, and physical systems that don’t, such as rocks. Among181

computing devices, we distinguish between more and less power-182

ful ones. These distinctions affect our behaviour: if a device is183

computationally more powerful than another, we pay more money184

for it. What grounds these distinctions? What is the principled185

difference, if there is one, between a rock and a calculator, or be-186

tween a calculator and a computer? Answering these questions187

is more difficult that it may seem. (Piccinini 2010 [12])2.188

1.2. Deviant encodings and intensional differences in models of computation189

The Church-Turing thesis consists of transforming a pre-systematic con-190

cept “being intuitively computable” (an explicandum) into a precise scientific191

concept “being TM computable” or “being recursive” (an explicatum). As192

such, it follows the general structure of a Carnapian explication. The method193

of explication was proposed by Rudolf Carnap, most prominently in (1950194

[2]), as a procedure for introducing new concepts to scientific or philosophical195

language. By the method of explication, Carnap writes,196

we mean the transformation of an inexact, prescientific concept,197

the explicandum, into a new exact concept, the explicatum. [2,198

page 3].199

The CTT treated as a Carnapian explication accounts for intensional dif-200

ferences between provably extensionally equivalent models of computation.201

2See also Piccinini (2015 [13]).
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Depending on the clarification of the concept at hand, various models grasp202

different aspects of what “to compute” means. For this reason, it would be203

interesting to see which clarification fosters which way out of the deviation204

phenomenon.205

A preliminary list of possible cases to study is the following: Gödel (193?206

[8]) prioritized Turing’s model as Turing’s intention to capture the pure pro-207

cess of a mechanical procedure (Gödel believed in existence of a domain-208

independent “absolute” concept of idealized computation); Soare (1996 [25])209

distinguishes between models based on TM and models based on recursive210

definitions, and Sieg (1997 [24]) discussed details of recursive model explain-211

ing which clarification of the concept of computation Church had in mind212

while working on theory of recursion. Shagrir (2006 [22]) investigates what213

can be done by an idealized human who computes by means of effective pro-214

cedures (e.g., Turing (1936 [27])), Kreisel (1987 [10]) vs. what a machine215

can do (e.g., Gandy (1980 [7])). Shapiro (1982 [23]), Rescorla (2007 [20]),216

Quinon (2014 [16]) look into computations performed on syntactical numerals217

vs. semantical abstract natural numbers. Finally, Trakhtenbrot (1988 [26])218

distinguishes computations defined for hardware vs. computations defined219

for software.220

2. Deviant encodings and computational structuralism221

The phenomenon of deviant encodings is a theoretical result which might222

seem not having any clear relation to the mathematical or philosophical prac-223

tice. In this paper, I present an example known from discussions in philoso-224

phy of mathematics, and through study of this example, I justify “why would225

we care about deviant encodings”.226

The main example which is infected by the problem of deviant encodings,227

that I am going to consider in the paper is the philosophical position called228

“computational structuralism”. Computational structuralism has been for-229

mulated as a consequence of the problem of how to single out the standard230

model of arithmetic. It aims at reconciling two philosophical/mathematical231

intuitions about the foundations of arithmetic:232

• Natural numbers serve to enumerate and compute.233

• Natural numbers are amenable to treatment as abstract entities forming234

a mathematical structure, in the sense of model theory.235
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The argument of computational structuralism can be reconstructed in236

the following way. As I understand it, the main objective of computational237

structuralism consists in providing the precise account on what is the stan-238

dard model of arithmetic using minimal philosophical resources and minimal239

ontological engagement (Quinon & Zdanowski 2007 [15]). In the structural-240

ist tradition, the role of the theory used to single out the standard model241

of arithmetic is played by PA2, however philosophical concerns related to242

the possibility of quantifying over sets or collections raises doubt when it243

comes to its conceptual thinness. Additionally, Halbach and Horsten (2005244

[9]) list also other reasons for which PA2 might be considered problematic.245

In consequence, computational structuralism opts for using PA1 which uses246

minimal quantificational ressources.247

However, there is an important problem related to the use of PA1, namely248

that it has nonstandard models. A nonstandard enumerable model of arith-249

metic is a model which is not isomorphic to the standard model. It can be250

bijectively mapped onto the standard structure, it falls under the axiomatic251

description, but the order on the set of its elements differs essentially from252

the order on the standard model. The order on the standard model is called253

an ω-order, that is, it corresponds to the order of the natural numbers pro-254

gression. I will call, in a usual way, N , the order on the natural number255

progression, Z, the order of negative and positive integers, and Q, the order256

of rational numbers. The order on a countable non-standard model starts257

with elements ordered in N , then it is followed by a dense order of copies258

of integers, Q × Z. Computational structuralism searches for a way of over-259

coming the difficulty caused by existence of non-standard models by adding260

a meta-mathematical constraint about the computability of interpretation of261

functional symbols in the language, and then it uses Tennenbaum’s theorem262

in order to single out the standard model of arithmetic.263

Theorem 2.1 (Tennenbaum 1959). Let M = ⟨M,+,×,0,1,<⟩ be a enu-264

merable model of PA1, and not isomorphic with the standard model N =265

⟨N,+,×,0,1,<⟩. Then M is not recursive.266

The contrapositive of this theorem makes its relevance more explicit:267

Theorem 2.2 (Tennenbaum transposition). Let M be an enumerable268

model of first-order Peano arithmetic. If the interpretation of addition and269

multiplication within M are computable then M is a standard model for arith-270

metic (a model with ω–type ordering).271
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One of the philosophically interesting consequence of the application of272

Tennenbaum’s theorem is that the set of models singled out with its help are273

ω-models where ω is computable (Quinon & Zdanowski 2007 [15]). Those274

models are called “intended” and form a proper subset of standard models.275

The vicious circle faced by computational structuralism differs from the276

vicious circles that are the focus of Quinon (2018 [17]). There, I was only277

concerned by the concept of natural number being indirectly involved in278

the definition of what “to compute” means. Conceptual structuralism needs279

to handle a slightly more elaborate idea. Its objective is to explicate the280

concept of natural number, identified with the standard model of arithmetic.281

Its solution consists in using the idea that natural numbers, and in particular282

those which are defined by Peano’s axioms, are the entities used for counting283

and computing. In consequence, natural numbers are defined in terms of284

computations. However, this is where the vicious circle arises: one of the285

characteristic features of the concept of computation is that computation is286

always defined on some given domain.3 This domain is always identifiable287

with the structure of natural numbers.288

Quinon (2018 [17]) argues that independently of the philosophical stand-289

point, each solution leads to another vicious circle. In the case of the concept290

of computation, nesting vicious circles are unavoidable. Researchers working291

in the area of computational structuralism, where the vicious circle is aug-292

mented by the concept of natural number, are more optimistic. Alternative293

ways out have been proposed. In this paper, I want to focus on the two the294

most involved in what can be called “conceptual engineering”.295

The first approach, proposed in, for instance (Quinon & Zdanowski 2007296

[15]), proposes to take as basic the concept of computation defined as symbols297

manipulation. This way of thinking qualifies as an example of application298

of the method of Carnapian explication. Carnapian explication is used to299

introduce new concepts to the language in some formal context. It consists in300

transforming an intuitive concept into a formal concept shaped for a specific301

scientific context.4 The intuitive concept of computation as manipulation302

of symbols, where symbols do not need to form any specific structure, is303

3As mentioned above, non-realised Gödel’s objective consisted in finding an“ absolute”
concept of computation, i.e., such a concept of computation that does not depend on any
domain.

4For a discussion of different explications of concepts of computation, see Quinon (2019
[18]).
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formalised by the concept of Turing computation. Computation over strings304

of characters is a primitive notion that does not presuppose either any other305

notion of computation, or any independent conception of natural numbers.306

I do not want to decide here if this argument has or does not have any307

weak points, and if it is or does not end up in another vicious circle. The308

method of explication provides a smooth way of providing a solution that309

is conceptually “good enough”. There can be other ways of explicating the310

same intuitive concept.5311

The second approach, comes from (Button & Smith 2012 [1]) and (Dean312

2014 [5]). Button and Smith claim that Tennenbaum’s theorem is of no use313

for a philosopher who wants to distinguish the standard model from other314

possible models of arithmetic. As the authors say:315

Suffice it to note that our discussion of Tennenbaum’s Theorem il-316

lustrates a familiar moral: philosophical problems which are sup-317

posedly generated by mathematical results can rarely be tackled318

by offering more mathematics. [1, page 120]319

Their argument is based on the nesting vicious circles phenomenon. They320

observe, that when the concept “natural number” is explicated, the concepts321

used in this explication, such as “to compute” or “finite” need explications322

in their turn, etc. Dean (2014 [5]) is similarly sceptical when it comes to the323

purposefulness of using Tennenbaum’s theorem to single out the standard324

model of arithmetic. However, differently to Button and Smith, Dean devel-325

ops a full fledged philosophical position. It is a Putnam-style model-theoretic326

realism for the concept of computation (see Putnam 1980 [14]). Dean claims327

that there is no point in trying to find external arguments to distinguish328

between various standard and non-standard models of arithmetic, nor any329

recursive theory. We should rather use the richness of the model-theoretic330

universe for studying structural properties of the concept of computation.331

Dean claims that it rather shows that there exists a continuum of pairs:332

model of arithmetic and computation in this model of arithmetic. In con-333

sequence, the Tennenbaum’s result instead of contributing to singling out334

the standard model of arithmetic, indicates that there exist non-computable335

5Similar way of thinking is suggested by Halbach and Horsten (2005 [9]), however those
authors rather attract philosophical attention to the Theorem and they describe several
ways of using it depending on the adapted philosophical standpoint.
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omega-models of arithmetic (the so called deviant or weird permutations)336

with a corresponding concept of computation defined within the model.337

In the two final sections of this paper, I am going to discuss two additional338

philosophical phenomena that are related to the solutions proposed to think339

about the Tennenbaum’s result and as such related to deviant encodings.340

The first is the phenomenon of “conceptual fixed points”, the second is the341

proof that each arithmetical function is provably computable in some model342

of arithmetic.343

3. Natural numbers, computation, and conceptual fixed points344

In moral philosophy, “the moral fixed points” are those moral propositions345

that are moral truths that need to be incorporated in a moral system. A346

normative system which fails to incorporate such propositions is not a moral347

system, but a normative system of some other kind. A useful example of348

such a moral fixed point is the proposition: “It is wrong to engage in the349

recreational slaughter of a fellow person” (Cueno & Shafer-Landau 2014 [4]).350

Eklund (e.g., 2015 [6, chapter 5]) extends this phenomenon to frame-351

works outside moral philosophy and, as he calls it, the “thinnest” normative352

words like “good”, “right”, “ought”. Eklund observes that in each concep-353

tual framework, there exist concepts that are difficult, if not impossible to354

engineer. “Truth” is one of those concepts. People care about truth, writes355

Eklund, and they do not care about some conceptually engineered concept356

of “truth*”. In consequence, truth is a concept that should keep a fixed357

position in a conceptual framework, and refer to the natural kin of assertions358

and beliefs. Similarly, “existence” is a conceptual fixed point. Eklund re-359

jects the claim present in the contemporary metaontological debate, where360

it is assumed “that there are alternative notions of existence that can be361

employed”. He claims that, similarly as in the case of “truth”, a conceptual362

framework that would result from adapting a conceptually engineered con-363

cept of “existence” would need to adjust its other key concepts in such a way364

that the resulting framework would be isomorphic to the initial one. Thus,365

“One cannot, so to speak, selectively engineer the quantifier”.366

Let me now observe the following relation between the conceptual fixed367

points and fixed points traditionally analysed in mathematics in the context368

of diagonalisation or self-reference: the conceptual fixed points as defined369

by Eklund, are the concepts interpreted in, what we call in philosophy of370

mathematics, their intended models. In different words, a fixed point consists371
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of a pair: the engineered concept corresponding to the intended meaning372

of the concept, or to borrow Eklund’s expression – the interpretation that373

“people care about”, and the possible world of interpretation, which actually374

corresponds to the intended model of this concept. Both concepts of natural375

number and the concept of computation are in this sense.376

4. Computing non-computable functions377

Dean’s solution and the context of model theoretical realism developed378

by Putnam brings us to another philosophical phenomenon related to the379

concept of computation. If there is no distinguished or intended model of380

arithmetic, as Dean suggests, there is no distinguished or intended concept381

of computation and in consequence, no encoding is deviant. Each encoding382

corresponds to some model of arithmetic.383

The explanation proposed by Dean is related to the meta-arithmetic384

proofs which demonstrate that it is possible to compute non-computable385

functions or that it is possible to prove consistency of arithmetic, that makes386

it to the surface on the regular basis. Most recently, Hamkins has used the387

diagonal argument to prove that there is a function, which goes through all388

the non-standard models and computes all functions computable in any of389

them. Such a proof has been recently published on Hamkins’ blog6.390

Hamkins “proves” the following theorem:391

Theorem 4.1. There is a Turing machine T with the following property, for392

any function f ∶ N ↦ N there is a model of PA1 such that in this model, if393

we give T any standard natural number, it halts and computes f(n).394

In different words, the theorem states that there exists a non-standard395

model in which the function is computed. Since it is a non-standard model,396

a computation forces a nonstandard number of steps. I will not be getting397

into formal details of the proof. My objective is to attract attention to398

philosophically interesting relations between concepts.399

6Joel David Hamkins, Mathematics and Philosophy of the Infinite, “Every func-
tion can be computable” March 2016, http://jdh.hamkins.org/every-function-can-be-
computable/?fbclid=IwAR0kuIR5V2d6PyxTwYEjfgKkRE0ZAKB9L9QleKyV3R5vasPVl76RIauSaOY.
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Conclusions400

To sum up, this paper is about the close relation between the concept of401

natural number and the concept of computation. It explores the idea, facil-402

itated by stepping away from conceptual analysis and adapting the method403

of Carnapian explication, that there exists an intended model of arithmetic.404

Unlike Dean (2014 [5]), but to some extent following Button and Smith (2012405

[1]), I claim that in order to find a pragmatic and executable way out of the406

vicious circle, one needs to accept that language develops from informal to407

formal and that concepts are first incomplete, and then those concepts ma-408

ture7. If, as in (Quinon & Zdanowski 2007 [15]) one accepts that there exists409

a workable and reasonable, conceptually rich, concept of computation un-410

derstood as symbol manipulation, then the explication is available through411

the application of Church-Turing thesis and yields TM-computation as its412

result.8.413
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