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Abstract Turing and Church formulated two different formal accounts of
computability that turned out to be extensionally equivalent. Since the ac-
counts refer to different properties they cannot both be adequate conceptual
analyses of the concept of computability. This insight has led to a discussion
concerning which account is adequate. Some authors have suggested that this
philosophical debate – which shows few signs of converging on one view – can
be circumvented by regarding Church’s and Turing’s theses as explications.
This move opens up the possibility that both accounts could be adequate,
albeit in their own different ways. In this paper, I focus on the question of
whether Church’s thesis can be seen as an explication in the precise Carnapian
sense. Most importantly, I address an additional constraint that Carnap puts
on the explicative power of axiomatic systems - an axiomatisation explicates
when it is clear which mathematical entities form the theory’s intended model
- and that implicitly applies to axiomatisations of recursion theory used in
Church’s account of computability. To overcome this difficulty, I propose two
possible clarifications of the pre-systematic concept of “computability” that
can both be captured in recursion theory, and I show how both clarifications
avoid an objection arising from Carnap’s constraint.

Keywords explications · Rudolf Carnap · the Church–Turing thesis ·
Church’s thesis · computability · axiomatic systems · structuralism

Introduction

Mathematicians’ project of formalizing the concept of effective computability
in the 1930s had various motivations. Turing wanted to solve the Entschei-
dungsproblem – the decision problem regarding provability of first-order sen-
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tences – formulated by Hilbert in 1928 [25]. Gödel and Church were interested
in specifying the concept of formal system and therefore needed a sharp con-
cept of effective method to account for finite reasoning in such systems. In
particular, Church and his group searched for effective methods of defining
functions on natural numbers, and thereby, a way of singling out the class of
functions that can be effectively computed.1

Various models of computation were formulated in response to these objec-
tives. Church’s thesis, formulated in 1936, identifies the pre-systematic concept
of “effectively computable” or “calculable” with the property of “being gen-
erally recursive” defined for functions on natural numbers.2 Turing’s thesis,
formulated in the same year, translates this pre-systematic concept into “be-
ing computable by a Turing machine”. The two definitions were soon shown
to be extensionally equivalent. Hence, the “Church-Turing thesis”.3

However, the fact that general recursiveness and Turing computability are
extensionally equivalent does not mean that they capture the same properties.
This raises the question of which of the two accounts, Church’s or Turing’s,
if any, provides an adequate conceptual analysis of the concept of effective
computability, where by “conceptual analysis” I mean an attempt to clarify a
given concept by identifying its conceptual parts. On this understanding the
two theses differ significantly in many aspects. For instance, Church’s thesis
states that effective computability can be analyzed in terms of properties of
functions defined on natural numbers understood as abstract objects. Turing’s
thesis, by contrast, expresses that effective computability can be analyzed
in terms of properties of functions defined on strings of symbols. Thus, the
two theses provide very different analyses of the concept in question. If one
assumes, as is often tacitly done, that only one analysis of a given concept can
be correct, once the latter has been properly disambiguated, then Church’s
analysis and Turing’s analysis cannot both be adequate.

Gödel, for whom the problem of defining computability was “an excellent
example [. . . ] of a concept which did not appear sharp to us but has become
so as a result of a careful reflection” (reported by Wang in 1974 [50, page 84]),
thought that it was Turing’s analysis that captured the concept of computabil-
ity in the most adequate way. He claimed that it is “absolutely impossible that
anybody who understands the question and knows Turing’s definition should

1 Turing provides a useful clarification of the concept of effective computability he aimed
at explaining in (1936). For an overview of the conceptual motivations of Church, Kleene
and Rosser see [44]. Gödel’s idea of how to formalize the concept of computability can
be found in [40]. Tennant (2015 [47, page 144]) suggests a “practical” reason why in the
early 1930s, the intuitive, pre-formal notion of a computable function was “crying out for
explication”, because it was thought to be important in urgent military applications of
high-speed cryptography methods.

2 Sieg in [44] claims, contra Davis [14], that Church himself never wanted to formulate
the thesis for λ-calculus.

3 It is common in general discussions to refer to both theses under the heading of “Church’s
thesis”. Church’s thesis then covers other models of computation too, e.g., Church’s lambda
calculus (1936) or Post’s combinatory processes (1936).
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decide for a different concept” [50, page 84]. Similarly, in (193? [23, page 168])4

Gödel wrote that “the correct definition of mechanical computability was es-
tablished beyond any doubts by Turing”. Moreover, Gödel also held that it is
exactly the adequacy of Turing’s thesis as a conceptual analysis that estab-
lishes the correctness of all the other equivalent mathematical definitions of
computability [23, page 168]. Even Church himself acknowledged the concep-
tual advantages of Turing’s definition, writing in 1937 that when it comes to
conceptual adequacy of his clarification of the concept of computability:

computability by a Turing machine [. . . ] has the advantage of mak-
ing the identification with effectiveness in the ordinary (not explicitly
defined) sense evident immediately. [11, page 43].

Despite Gödel’s view on the special status of Turing’s thesis as a conceptual
analysis, the analysis itself did not attract much attention at the time of its
formulation. As Shagrir puts it:

Turing’s argument has been fully appreciated only recently. Turing’s
contemporaries mention the analysis, along other familiar arguments,
e.g., the confluence of different notions, quasi-empirical evidence, and
Church’s step-by-step argument but do not ascribe it any special merit.
Logic and computer science textbooks from the decades following the
pioneering work the 1930s ignore it altogether. [40, pages 9–10].

The interest in the conceptual issues related to computability was renewed
at the end of the last century. The most recent discussions about the primacy
of one account of computability over the other can be found in Soare (1996
[46]), Shapiro (1982 [41]), Gandy (1980 [20], 1988 [21]), Rescorla (2007 [37],
2012 [38]), Copeland & Proudfoot (2010 [12]), Quinon (2014 [36]), and also,
the most recently, in the volume edited for Turing’s 100th anniversary by Juliet
Floyd and Alisa Bokulich (2017 [19])5. Various arguments are put forward by
both camps. Some of the authors formulate arbitrary affirmations, as Gandy
(1988 [21]) who writes that Turing’s work in providing the definitive meaning
of “computable function” is “a paradigm of philosophical analysis: it shows
that what appears to be a vague intuitive notion has in fact a unique meaning
which can be stated with complete precision” [21, pages 84–86]. Other authors
advance sophisticated arguments, such as Rescorla (2007 [37], 2012 [38]), who
advocates for the supremacy of Church’s thesis by arguing that the problem of
defining semantics for Turing computability leads to either extensional inad-
equacy or circularity. In consequence, claims Rescorla, Turing’s thesis fails to
be an analysis of computability at all. Rescorla refers to the well known prob-
lem, sometimes called “the semantical Halting problem”, according to which
if there were no “external” constraints on the choice of such a semantics –
for instance, constraints on possible denotation functions that can be used for

4 This paper, published in the third volume of Gödel’s Collected Works, is taken from
undated handwritten notes in English, most probably for a lecture, found in a spiral notebook
in the Nachlass.

5 I am grateful to an anonymous reviewer for reminding me about this publication.



4 Paula Quinon

mapping from numerals to numbers – a Turing machine would compute – un-
der some “deviant semantics” – non-computable functions on natural numbers
(Shapiro 1982 [41], Copeland & Proudfoot 2010 [12], van Heuveln 2000 [26]).

Disagreements about the proper analysis of important concepts tend to
linger on indefinitely, as witnessed by many similar debates in the history of
philosophy. A way out of a possible philosophical standoff would be to view
Turing’s and Church’s theses not as competing conceptual analyses, but rather
as explications – i.e., rational reconstructions or specifications of an intuitive
concept – in the sense of Carnap (1950 [7]).6 While there can be only one
adequate conceptual analysis of a given concept, there may be several equally
fruitful explications of the same pre-systematic concept. In consequence, one
can defend both attempts – Church’s and Turing’s – as good explications of ef-
fective computability, and there is no need to argue for one to the disadvantage
of the other.

The idea that the Church-Turing thesis is an explication has already been
put forward by several authors. Some do not use the term “explication”, but
speak of “rational reconstruction” instead (Mendelson 1990 [32, page 229],
Schulz 1997 [39, page 182]); others classify the thesis as an explication, but
only in an informal sense (Machover 1996 [31, pages 259-260]).

Tennant [47, chapter 10] presents the Church-Turing thesis as a paradig-
matic example of a successful explication in both an informal and a strictly
Carnapian sense. The reason that Tennant brings to support his hypothesis is
rather traditional, as he says that the explicative power of the Church-Turing
Thesis is confirmed by the fact that many formal characterizations of the in-
tuitively computable functions coincide in extension. What is interesting in
Tennant’s approach is that the CTT is a “founding instance” of the method,
which means for Tennant that “all subsequent explications of other concepts
may be measured against it, when assessing their degree of success” [47, page
139] and that philosophers should “emulate this achievement in yet other con-
ceptual domains” [47, page 149]. He says even that Carnap’s “monumental
work on the foundations of the theory of probability (Carnap 1950), in which
he introduced, for the first time, the very idea of explication” [47, page 150]
should be seen as a follow up to the endeavour of the logicians and foundation-
alists of the 1930s. From Tennant’s presentation one could get the impression
that Carnap may have been inspired by Church and Turing, but Carnap – in
fact – never mentions computability in the context of explication7. I will have
reason to return to this surprising fact and its probable cause below.

6 My current purpose does require me to account for all the details distinguishing various
understandings of what “analysis” and what “explication” mean. For instance, Floyd (2012
[18]) accounts for differences between Turing’s understanding of his own work – that she calls
“Turing’s ideal of explication and analysis” – and the way Carnap proposed to introduce
new concepts to the scientific language. Similarly, Carnap’s ideal of explication differs from
similar notions found in Quine, Strawson, Turing or Wittgenstein. I will not get into details
of these discussions as arguments that I present apply already at a higher level of generality
[49].

7 The only place where Carnap refers to Church’s and Turing work on computability is
the note on page 79 of Meaning and Necessity (1947 [6]). Carnap highlights equivalence
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Floyd (2012 [18]) concentrates on Turing’s thesis – as clearly distinguished
from Church’s thesis – and argues that it satisfies Carnap’s criteria for a good
explication. She writes that “Turing’s explication of this class of functions is
distinctively vivid and simple: it offers similarity between explicandum and
explicans, precision of formulation within systematic science, fruitfulness in
the formulation of general laws, and remarkable simplicity” [18, pages 34].

Murawski & Woleński (2006 [33]) refer explicitly to Carnap’s method of
explication. They discuss the philosophical status of Church’s version of the
thesis. They claim that the most adequate way of thinking of the theoretical
status of the thesis is in terms of its being a Carnapian explication. They argue
that this is more satisfactory than treating it as an empirical hypothesis, or
an axiom, or a theorem, or a definition.8 Murawski & Woleński contend that,
as is required from a Carnapian explication, the thesis consists in replacing
“an intuitive and not quite exact concept by a fully legitimate mathematical
category” [33, page 322]. In support, they claim that “Church examined the
standard (stock) use of the term ‘computable function’ in the language of in-
formal mathematics” [33, page 324]. They state [33, page 311] that “[a] useful
notion in providing intuitions concerning effectiveness is that of an algorithm”,
so – as I would say following Carnap’s methodology – the concept of an algo-
rithm can be seen as a clarification of the pre-scientific concept. They have no
doubts that exactness and fruitfulness are satisfied9, and state that similarity
and simplicity10 might be more problematic, but it “does not need to worry
users of (CT)” [33, page 322].

In this paper, I provide a detailed and careful study of Church’s thesis – as
distinguished from Turing’s thesis and other models of computability – from
the point of view of Carnap’s methodology. The argument that the axioms
of recursion theory explicate the concept of computability is more demanding
than the one necessary in the case of Turing’s version. The complicating fac-
tor is that Carnap committed himself to the view that an axiomatic theory
might not be suitable for providing an explication of a concept. This follows
from his view that semiformal, semi-interpreted axiomatic systems11 – where
non-logical constants are not properly clarified and interpreted – are unsuit-
able forms for explicating pre-systematic concepts. Since recursion theory is
standardly developed in the form of a semiformal, semi-interpreted system,
Carnap’s view precludes interpreting Church’s thesis as an explication at all,

between various formal models of computation, but does not say anything about Church’s
thesis. I am grateful to an anonymous reviewer for drawing my attention to the latter.

8 Murawski & Woleński (2006 [33]) suggest various possible theorerical statuses fot the
Church-Turing thesis in the context of analyticity/syntheticity and a priority/a posteriority.

9 One might object that the authors do not illustrate their investigations by examples.
10 In section 1 of this paper we explicate in detail all Carnapian terminology. Here a

reader less accustomed with the theory of explications can benefit from the presentation
while relying on her intuitive understanding of its meanings.
11 Again, full explications of differences between various axiomatic systems are explained

later, in section 3.
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let alone a good one. This difficulty, which I will refer to as Carnap’s implicit
objection12, seems to have escaped other authors.

My focus will be on the question of whether Carnap’s implicit objection
can be overcome in the case of Church’s thesis. More precisely, I study Car-
nap’s objection to semiformal, semi-interpreted axiomatic systems and I show
how the objection can be overcome to enable recursion theory to provide a
Carnapian explication of computability.

In Section 1 (“Carnap’s method of explication”) I analyse details of the
process of explication (i.e., clarification stage, context choice, specification
stage) and the requirements that enable assessment of the adequacy of an ex-
plication. In section 2 (“Church’s thesis as a Carnapian explication”) I verify
that Church’s thesis follows a Carnapian process of explication and I show
that it satisfies Carnap’s requirements of adequacy. In section 3 (“Axiomatic
systems as explications”) I search for those features of axiomatic systems that
provides them with an explicative power. Section 4 (“Carnap’s implicit ob-
jection and arithmetic”) is devoted to Carnap’s examples of an explicating
axiomatic system – Frege’s arithmetic – and a non-explicating one - Peano’s
arithmetic. Using conclusions from the previous section, I argue that Peano’s
Arithmetic also explicates the concept of natural number. Finally, in section 5
(“Multiplicity of clarification of computability”), I indicate two possible ways
to justify the claim that Church’s thesis is an explication.

1 Carnap’s method of explication

While going through the state of art in the introductory section, I referred
to the Carnapian method of explication in an informal way. This section is
devoted to introducing this method in a systematic way.

The method of explication was proposed by Rudolf Carnap, most exten-
sively in his Logical Foundations of Probability (1950 [7]), as a procedure for in-
troducing new concepts to scientific or philosophical language. By the method
of explication, Carnap explains,

we mean the transformation of an inexact, prescientific concept, the
explicandum, into a new exact concept, the explicatum. [7, page 3].

It has been formulated in the context of what is known as “the paradox of
analysis”13. Carnap’s method of explication resolves the paradox as it consists

12 I am indebted to Erik J. Olsson for suggesting this term.
13 According to Lavers (2013 [30]) the term “the paradox of analysis” comes from Langford

(1942/1968 [29]) and was formulated as a commentary on G.E. Moore’s philosophy .

[t]he paradox of analysis can be explained as follows. Suppose one gives an analysis
of some concept A by saying that to be A is to be B. If A and B have the same
meaning, then the analysis is uninformative. If A and B have different meanings,
then the analysis is incorrect. While many might see the paradox of analysis as
something of a curiosity, Carnap took it to rule out a certain view on analysis. [30,
page 226].
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in replacing an intuitive notion by a scientific one without requirement to
preserve the exact extensional and intensional adequacy. Thus, an explication
can be seen as a mapping from an informal (or prescientific, or pre-systematic)
domain – where terms usually do not have any unique, precise and specialized
meaning – to a formal (or scientific) domain – where terms are carefully defined
in the context of other terms that reached the precise meaning earlier in the
process of explication, or have been accepted as primitive. To illustrate this
process Carnap proposes thinking about a pocketknife:

A natural language is like a crude, primitive pocketknife, very useful for
a hundred different purposes. But for certain specific purposes, special
tools are more efficient, e.g., chisels, cutting machines, and finally the
microtome. If we find that the pocket knife is too crude for a given
purpose and creates defective products, we shall try to discover the
cause of the failure, and then either use the knife more skilfully, or
replace it for this special purpose by a more suitable tool, or even invent
a new one. [Strawson’s] thesis is like saying that by using a special tool
we evade the problem of the correct use of the cruder tool. But would
anyone criticize the bacteriologist for using a microtome, and assert
that he is evading the problem of correctly using the pocketknife? [9,
pages 937-938].

In many ordinary life situations a pocketknife is an extremely useful tool,
however it is useless in more specific situations that necessitate a higher degree
of precision. When one wants to cut out a sophisticated wooden form, one
will rather use, for example, a stainless steel laser woodcutter with a micro
fence system. The way in which one should develop the language of sciences,
according to Carnap, is analogous to how the pocketknife is, in some contexts,
replaced by a more specialized tool. One should adjust the tool and instead of
an imprecise explicandum use a precise explicatum well suited for a specific
context of use; the explicandum, however, should remain in use outside the
targeted context of application. Similarly, one will keep her pocketknife in a
pocket and use it daily, but one will use a highly precise woodcutter to make
a decoration for one’s bedroom.

The method of explication, as Carnap sees it, consists of two steps:

1. The clarification of the explicandum.
2. The specification of the explicatum.

The rationale for clarification is that a given term may have many different
meanings in ordinary language. Unless one of these meanings is clearly picked
out from the start and the context of its use is clearly indicated, it is unlikely
that the method of explication will yield a useful result. Clarification serves
this purpose. As Carnap explains,

[a]lthough the explicandum cannot be given in exact terms, it should
be made as clear as possible by informal explanations and examples.
[7, page 3].
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In this paper, I argue that it is exactly the stage of clarification, which
allows us to overcome Carnap’s worries relating semiformal, semi-interpreted
axiomatic systems and allows us to formulate an explicating implicit definition.
I highlight this point, because – despite its huge importance – the clarification
stage easily gets underestimated. Already Carnap noted that his commentators
show a tendency to think that in the nature of the explicandum there is an
inherent inexactitude, that an explicandum can never be given in exact terms,
and that – therefore – it does not matter in which words and to what extent
it is clarified. According to Carnap such a view is “quite wrong”:

On the contrary, since even in the best case we cannot reach full exact-
ness, we must, in order to prevent the discussion of the problem from
becoming entirely futile, do all we can to make at least practically clear
what is meant as the explicandum. What X means by a certain term in
contexts of a certain kind is at least practically clear to Y if Y is able
to predict correctly X’s interpretation for most of the simple, ordinary
cases of the use of the term in those contexts. It seems to me that, in
raising problems of analysis or explication, philosophers very frequently
violate this requirement. They ask questions like: ‘What is causality?’,
‘What is life?’, ‘What is mind?’, ‘What is justice?’, etc. Then they of-
ten immediately start to look for an answer without first examining the
tacit assumption that the terms of the question are at least practically
clear enough to serve as a basis for an investigation, for an analysis or
explication. [7, page 4].

The fact that the terms in question are “unsystematic and inexact” does not
mean that there is no way of approaching intersubjective agreement regarding
their “intended” meanings. The procedure suggested by Carnap is to indicate
the meaning by some well-chosen examples, perhaps supplemented by, to use
his words, “an informal explanation in general terms” [7, page 4].

At this stage, this might be done in relatively crude terms by indicating
what is to be included in the scope of reference or extension of the term, and
what is intended to be excluded from it. To illustrate this point, Carnap invites
the reader to consider several examples. For instance, he says, take the term
“salt”. Suppose one wishes to explicate this concept. Then one might say, for
example, “I mean by the explicandum ‘salt’, not its wide sense which it has
in chemistry but its narrow sense in which it is used in the household”. A
possible explicatum for this term might be “sodium chloride”, or NaCl, in the
language of chemistry. Or, to take another of Carnap’s examples, suppose one
wishes to explicate the term “true”. A clarification of the explicandum may
involve stating that one does not target the meaning that “true” has in phrases
like “a true democracy” or “a true friend”, but rather the meaning it has in
phrases like “this sentence is true”, “what he just said is true”, and so on.
Then one would specify a formal theory of truth – as Carnap himself suggests
– the one formulated by Tarski. Again, in making these choices one has not
yet explicated the term “true”; one has only clarified its intended meaning.
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All explanations of this kind serve only to make clear what is meant as
explicandum; they do not yet supply an explication, say a definition of
the explicatum; they belong still to the formulation of the problem, not
yet to the construction of an answer. [7, page 4].

A clarification of the explicandum enables the next step of the explication
process, a specification of the explicatum and formulation of the exact concept
in the targeted context. This exact concept shall in some way “correspond” to
the intuitive, everyday concept. But what does this relation of correspondence
entail? It is obvious that one cannot hope for complete similarity in meaning.
After all, the whole point of explication is, in a sense, to diverge from the
meaning of the intuitive concept by introducing a more exact correlate that is
hopefully more useful in a given scientific or formal context. This is confirmed
by actual scientific practice, for example, analytic geometry reveals little sim-
ilarity to intuitive geometrical concepts like “line”, “distance”, “angle”, and
so on, but it still achieves an adequate explication of those concepts. This is
because, it introduces them in the precise framework of arithmetic using a co-
ordinate system, which, in consequence, opens up the possibility of applying
algebraic and analytic methods to investigate geometrical concepts and their
relations in a spectacularly fruitful manner.

Since the method of explication requires neither extensional nor intensional
adequacy between explicandum and explicatum, instead of asking whether the
solution is right or wrong one should ask whether it is satisfactory for the pur-
poses for which it is to be used. In this way, generalizing from prototypical
examples of scientific definitions, Carnap arrives at the following four gen-
eral requirements on an explicatum. Those requirements enable an assessment
of the adequacy of the explication and also enable a comparison of various
explications of the same clarification of the concept.

1. Similarity. “The explicatum [the thing that explicates] is to be similar to
the explicandum [the thing that is explicated] in such a way that, in most
cases in which the explicandum has so far been used, the explicatum can be
used; however, close similarity is not required, and considerable differences
are permitted.”

2. Exactness. “The characterization of the explicatum, that is, the rules of
its use (for instance, in the form of a definition), is to be given in an exact
form, so as to introduce the explicatum into a well-connected system of
scientific concepts.”

3. Fruitfulness. “The explicatum is to be a fruitful concept, that is, useful
for the formulation of many universal statements (empirical laws in the case
of a nonlogical concept, logical theorems in the case of a logical concept).”

4. Simplicity. “The explicatum should be as simple as possible; this means
as simple as the more important requirements 1), 2) and 3) permit.” [7,
page 7].14

14 Carnap adds, referring to the fourth requirement, that “[t]he simplicity of a concept may
be measured, in the first place, by the simplicity of the form of its definition and, second,



10 Paula Quinon

In this paper, I am concerned with the question whether Church’s thesis
– as distinguished from Turing’s thesis and other models of computability –
can be viewed as an explication in Carnap’s sense. I will start by checking
the structural and substantial adequacy of this thesis against Carnap’s four
requirements.

2 Church’s thesis as a Carnapian explication

The usual formulation of Church’s thesis goes as follows:

[Church’s thesis] A number-theoretic function is computable if and only if it
is general recursive.

Undoubtedly, Church’s thesis satisfies the condition of transforming a pre-
systematic concept (explicandum) into an exact and scientific concept (expli-
catum). Church himself was very clear on this point:

The purpose of the present paper is to propose a definition of effective
calculability which is thought to correspond satisfactorily to the some-
what vague intuitive notion in terms of which problems of this class
are often stated, and to show, by means of an example, that not every
problem of this class is solvable. [10, page 346].

Or:

We now define the notion [. . . ] of an effectively calculable function of
positive integers by identifying it with the notion of recursive of positive
integers [. . . ] This definition is thought to be justified by the considera-
tions which follows, so far as positive justification can ever be obtained
for the selection of a formal definition to correspond to an intuitive one.
[10, page 356].

Kleene (1952 [28]) wrote, in this connection:

Since original notion of effective calculability of a function (or of ef-
fective decidability of a predicate) is a somewhat vague intuitive one,
[Church’s thesis] cannot be proved [. . . ]

While we cannot prove Church’s thesis, since its role is to delimit pre-
cisely an hitherto vague conceived totality, we require evidence that it
cannot conflict with the intuitive notion which it is supposed to com-
plete; i.e., we require evidence that every particular function which our

by the simplicity of the forms of the laws connecting it with other concepts.” [7, page 7]. He
also emphasizes that simplicity is of secondary importance, since many scientific theories
involve complex concepts that turn out to be highly useful. In general, simplicity comes into
consideration only in cases where there is a question of choice among several concepts which
achieve about the same similarity and exactness, and seem to be equally fruitful: if these
concepts show a marked difference in their degree of simplicity, the scientist will, as a rule,
prefer the simplest of them [7, page 7].
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intuitive notion would authenticate as effectively calculable is [. . . ] re-
cursive. The thesis may be considered a hypothesis about the intuitive
notion of effective calculability, or a mathematical definition of effec-
tive calculability; in the latter case, the evidence is required to give the
theory based on the definition the intended significance. [28, 317–319].

When it comes to clarification of the intuitive concept of computability
that Church was aiming at, the best account can be found in Sieg (1997)15.
Sieg reconstructs the intellectual framework in which Church was aiming to
formalise the concept of effective calculability and he thereby reconstructs
Church’s contribution to the analysis of the informal notion of effective com-
putability. Sieg’s reconstruction is the best we have to understand Church’s
legacy, as Church’s own writings – unlike Turing’s – lack transparency re-
garding his theoretical motivations, i.e., lack clarification of the concept of
computability he worked with or on [44, page 154].

It is implied by Sieg that Church had two aims in searching for an expli-
cation of the intuitive concept of computability. Firstly, Church aimed to find
a way to determine what “constructive definability” is in order to formulate
what is called today Kleene’s representability thesis: “a formula can be found
to represent any particular constructively defined function of positive integers
whatever”. Church and his group believed that finding such a set of formulas
would amount to constructing a logical system that would not be subject of
Gödel’s Incompleteness Theorems. This led Church to another aspect or clar-
ification of the intuitive concept of computability. It gradually became crucial
for him to capture the concept of the minimal step in reasoning.

When it comes to the domain for which an explication is to be formulated,
the concept of recursivity is formulated for a precise domain: the structure of
natural numbers (understood as abstract mathematical entities). Numerous
passages in Church’s writing clearly confirm the choice of this domain. For
instance, in the passage quoted just at the beginning of this section we read:

We now define the notion [. . . ] of an effectively calculable function of
positive integers by identifying it with the notion of recursive function
of positive integers. [10, page 356, my underline].

Kleene is equally explicit on this point:

We entertain various proposition about natural numbers [. . . ] This heuris-
tic fact [that all recognized effective functions turned out to be general
recursive], as well as certain reflections on the nature of symbolic al-
gorithmic processes, led Church to state the [. . . ] thesis. [27, page 60,
my underline].

The concept of computability is hence explained as referring to a particular
set of functions on natural numbers and its formalization is executed within
a well-known mathematical context, namely within axiomatic number theory,

15 See also Sieg’s other papers for additional analyses, e.g., [43] and [45]; and also Martin
Davis’ [14].
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initiated by Peano and Dedekind, and proof theory, as studied by Hilbert. At
this time axiomatic number theory still was interpreted materially, i.e. axioms
were formulated in such a way that their intended interpretation – the domain
of natural numbers – was obvious. Hilbertian formalization was a very new way
of describing mathematical reasoning and mathematical structures. Church’s
understanding of intuitive computability followed - as Sieg suggests - a similar
development. Church’s aim was at first to express something specific about
natural numbers, and it gradually became more abstractly oriented towards
an analysis of minimal steps between stages.

The explicatum in Church’s thesis – expressed with logico-mathematical
concepts i.e., recursive functions as given by a semiformal, semi-interpreted
system of axioms with recursive definitions – fulfils the Carnapian require-
ments:

The explicatum is given by explicit rules for its use, for example, by a
definition which incorporates it into a well-constructed system of scien-
tific either logicomathematical or empirical concepts. [7, page 3].

It seems clear that the structure of Church’s thesis follows that of an ex-
plication and also that it is formulated for a clarified concept and with the
intention of inserting the formal definition into a specific scientific framework. I
am now in a position to determine the extent to which Church’s thesis satisfies
the requirements that Carnap puts on an explicatum.

Concerning the similarity of the explicandum to the explicatum, Carnap
requires that the explicatum be such that it could be used “in most cases in
which the explicandum has so far been used”. When one thinks about the
development of the language of science and conceptual clarification, it means
that if at an earlier stage the expression “x” was used to refer to the concept
X in the context Y (“x”, X, Y ), then after the conceptual development took
place and the concept X was succeeded by the concept X∗, the expression
“x” refers to X∗ (“x”, X∗, Y ). Sometimes “x”, instead of shifting meaning,
is replaced by “x∗” (like in the case of “fish” and “piscis”) (“x∗”, X∗, Y ). As
Carnap puts it:

The former concept has been succeeded by the latter in this sense: the
former is no longer necessary in scientific talk; most of what previously
was said with the former can now be said with the help of the latter
(through often in a different form, not by simple replacement). [7, page
6].

The similarity requirement means that the transformation of X to X∗

is such that extension of X∗ significantly overlaps with the extension of X.
For instance, when the explicatum is the concept of truth (X), clarified as
a property of sentences (Y ), Tarski’s theory of truth (X∗) regulates the use
of the term “truth” (“x”), sometimes replaced by “T -truth” (“x∗”). In most
cases, a sentence that is informally true will also be true in Tarski’s sense, and
the other way round. Similarly, the functions that are effectively computable
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in an intuitive sense will correspond closely to the functions singled out by
Church’s explication of that same concept.

The second requirement that Carnap puts on the explicatum is that “the
rules of its use are to be given in an exact form”. This is the consequence
of Carnap’s demand that the explicatum be embedded in an already existing
theory and in an accepted manner. In this way, the rules of its use can be
specified in an exact way by means of precise definitions. Similarly, the ax-
iomatic theory of recursion, together with associated rules for defining new
functions, provides very specific information about how to use its terms and
clearly determines which number-theoretical functions the formal predicate
“being a recursive function” applies to.

When it comes to fruitfulness, there can be no doubt that the formalization
of the concept of an effectively computable function has been tremendously
valuable, giving rise to the whole new field of study in which many substantial
results could be conclusively proved. Due to the axiomatization of the theory
of recursive functions, it is possible not only to specify which functions are
recursive, but also to study them from a meta-level, for example within a
theory of computability, formal arithmetic, or complexity theory.

As Tennant (2015 [47]) explains this situation:

One of the benefits of (the presumed truth of) the Turing-Church Thesis
is that we can re-visit the diagonal argument [. . . ]. We can now reprove
the claim that not all computable functions are total, no longer making
any use of [intuitive principles]. This is because, courtesy of the Turing-
Church Thesis, we can effectively enumerate the computable functions
by effectively enumerating, ‘instead’, the Turing-Machine computable
ones. The latter task can be accomplished with absolute precision, with
no hostages to fortune in judging, intuitively, whether a given finite set
of English instructions really does guarantee that the function in ques-
tion is genuinely computable. This is because Turing machines them-
selves can be effectively coded as numbers, and, given any such number,
one can effectively determinate whether it encodes a Turing machine,
and, if so, exactly, which Turing machine it encodes. This removes all
doubt from the claim, in the proof above, that one can effectively enu-
merate all and only the (Turing-machine)-computable functions. The
diagonal argument in question now goes through as before. Not all
computable functions are total. [47, page 149].

Another significant benefit of the Turing-Church Thesis is that it af-
fords an exceptionally simple proof of Gödel’s famous result that first-
order arithmetical truth is not axiomatizable. [. . . ]. The argument to
be presented there will involve yet another application of the diagonal
method. [47, page 149].

The functioning of the fruitfulness is depicted in Figure 1. It illustrates how
we can gain new knowledge about computable function via the formalization
provided by Church.
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Fig. 1 Fruitfulness. There is an intuitive concept of what can be computed with the use
of natural numbers and also an informal theory associated with this concept. Once the
concept is formalized, it starts functioning in a formal theory that, ideally, should enable
generalization of many intuitive laws. This schema comes from discussions with Erik J.
Olsson.

Finally, simplicity is verified by (i) observing the striking simplicity of the
definition of the class of functions that recursive functions are composed from,
and also (ii) observing the simplicity of rules that are used to formulate new
functions, and hence to prove new general laws (that opens up a possibility of
connecting the precise concept of recursive function with other important con-
cepts). Church, like Turing, instead of trying to capture all possible processes,
proposes a small number of constraints from which all complex computations
can be obtained. General Recursive Functions are most frequently defined as
consisting of zero, successor, projection functions together with operations of
composition, primitive recursion and search function (µ-operator), see Ender-
ton (1972 [17, 18–20]).

3 Axiomatic systems as explications

In the face of the above analysis, it is difficult not to agree with Tennant and
those others who claim that Church’s thesis can be seen as a Carnapian ex-
plication, indeed, a paradigmatic example of one. Surprisingly, however, there
are elements of Carnap’s view that run counter to this – otherwise very nat-
ural – conclusion. Carnap was reluctant to accept without reservation what
he refers to as “semiformal, semi-interpreted axiomatic systems” as a properly
scientific form of explication. The theory of recursive functions, which is used
in Church’s explication, belongs to this class. Accordingly, Carnap never men-
tions the Church-Turing thesis as an example of explication. Taking that into
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account, I need to explicitly address his objection regarding the explicative
power of semiformal, semi-interpreted axiomatic systems.

Most generally, Carnap explains his interest in the axiomatic method by
saying that the axiomatic method can be used to introduce new concepts
into the language of science, which is exactly the objective of the method of
explication [7, page 15]. This section is devoted to reconstructing Carnap’s
analysis of the adequately explicating axiomatic systems and those, which –
despite playing other important epistemic roles – do not explicate.

Carnap starts his discussion by highlighting that the axiomatic method
consists of two steps, formalization and interpretation:

1. Formalization consists in the formulation of formal axioms indicating re-
lational properties of the theory under study, as Carnap puts it:

The formalization (or axiomatization) of a theory or of the concepts
of a theory is here understood in the sense of the construction of
a formal system, an axiom system (or postulate system) for that
theory. [7, page 15].

2. Interpretation consists of indicating which entities the theory refers to:

The interpretation of an axiom system consists in the interpretation
of its primitive axiomatic terms. This interpretation is given by rules
specifying the meaning, which we intend to give to these terms;
hence the rules are of a semantical nature. [7, page 16].

Then Carnap distinguishes three types of axiomatic systems, which are – or
have been – used in mathematical practice [7, page 15–16]. As I see it following
Carnap’s presentation, these types of axiomatisation can be differentiated by
the way in which the two steps are implemented.

The first type is a strictly formal axiomatic system, by which he means:

a formal system in the strict sense, sometimes called a calculus (in the
strict sense) or a syntactical system; in a system of this kind all rules are
purely syntactical and all signs occurring are left entirely uninterpreted
[. . . ]. [7, page 15].

In Logical Foundations of Probability (1950 [7]) strictly formal systems of
axioms are simply listed as a possible type of axiomatisation without fur-
ther details, but an extensive discussion of their properties can be found in
Introduction to Semantics (1942 [4]) and also in Logical Syntax of Language
(1937 [2]). In [4] Carnap introduces the idea that the whole science of language
(called semiotic) divides into three fields:

If in an investigation explicit reference is made to the speaker, or, to
put it in more general terms, to the user of a language, then we assign it
to the field of pragmatics. (Whether in this case reference to designata
is made or not makes no difference for this classification.) If we abstract
from the user of the language and analyze only the expressions and their
designate, we are in the field of semantics. And if, finally, we abstract
from the designate also and analyze only the relations between the
expressions, we are in (logical) syntax. [4, page 9].
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Furthermore, both syntax and semantics can be studied from two perspec-
tives [4, page 12]:

– a descriptive approach, strongly entwined with pragmatics, consisting of
empirical investigations of the semantical or syntactical features of histor-
ically given languages, or

– a pure approach, fully independent from all pragmatic considerations, con-
sisting of lying down “definitions for certain concepts, usually in form of
rules”, and studying “the analytic consequences of these definitions”. These
rules can be formulated with intention of providing a model of existing
“pragmatical facts”, but they can also be chosen in an arbitrary manner
as a consistent set of sentences. [4, page 13, compare also page 155].

The pure approach to syntax opens up a possibility to abstract not only
from the users of the language, but also from meaning, and in consequence
study syntax without any appeal to semantics. The construction of a pure syn-
tactical system of rules (called sometimes by Carnap a “calculus K”) consists
of well-defined and strictly formal steps, including:

a classification of signs, the rules of formation (defining “sentence in
K”), and the rules of deduction. The rules of deduction usually consist of
primitive sentences and rules of inference (defining “directly derivable in
K”). Sometimes, K contains also rules of refutation (defining “directly
refutable in K”). If K contains definitions they may be regarded as
additional rules of deduction. [4, page 155].

It should be now clear that in Carnap’s view a purely syntactical system
cannot play the role of an explication as “for a genuine explication [...] an inter-
pretation is essential” [7, page 16], whereas ”in a system of this kind all rules
are purely syntactical and all signs occurring are left entirely uninterpreted”
[7, page 15]. The only function of a purely syntactical system is to “deter-
mine the procedure of formal deduction, i.e., of the construction of proofs and
derivations” [4, page 155].

The second type of axiomatic system that Carnap discusses in his (1950,
[7]) is called a semiformal, semi-interpreted axiomatic system. Axiomatic sys-
tems of this type, can – if adequately developed – serve to introduce new terms
to the language in such a way that these terms explicate.

The introduction of new concepts into the language of science - whether
as explicata for prescientific concepts or independently - is sometimes
done in two separate steps, formalization and interpretation. [. . . ] The
two steps are the two phases of what is known as the axiomatic (or
postulational) method in its modern form. [. . . ] We are not speaking
here of a formal system in the strict sense, sometimes called a calcu-
lus (in the strict sense) or a syntactical system; in a system of this
kind all rules are purely syntactical and all signs occurring are left en-
tirely uninterpreted [. . . ]. On the other hand, we are not speaking of
axiom systems of the traditional kind, which are entirely interpreted.
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In the discussions of this book we are rather thinking of those semifor-
mal, semi-interpreted systems which are constructed by contemporary
authors, especially mathematicians, under the title of axiom systems
(or postulate systems). In a system of this kind the axiomatic terms
(for instance, in Hilbert’s axiom system of geometry the terms “point”,
“line”, “incidence”, “between”, and others) remain uninterpreted, while
for all or some of the logical terms occurring (e.g., “not”, “or”, “every”)
and sometimes for certain arithmetical terms (e.g., “one”, “two”) their
customary interpretations is – in most cases tacitly – presupposed. [7,
page 15–16].

However, not all semiformal and semi-interpreted axiomatic systems ex-
plicate, but only those – as we can read from Carnap’s analysis – which for-
malization is formulated in such a way that it directs us smoothly towards
an interpretation. Carnap’s idea reminds us here of the Fregean constraint on
formulation of first principles: any successful foundations of a mathematical
theory must explicitly account, even at the most fundamental (for example,
axiomatic) level, for applications of the entities forming the intended model of
this theory.16 In more Carnapian terms we can say that the clarification that
one targets while formulating axioms is such that it leaves no doubts which
elements from the domain of the targeted scientific context are the objects
that shall fall under the term being explicated. If the formalization does not
fulfil this requirement, a semiformal, semi-interpreted axiomatic system does
not explicate, but rather plays – in exactly the same way as purely syntactic
systems – a deductive role and provides support in inferential contexts.

Carnap presents his (quite standard) view on systems of semiformal, semi-
interpreted axioms in [3, SS16]. It consists of two parts: a basic logical calculus
and a non-logical part.

– The basic logical calculus:
could be approximately the same for all those calculi; it could con-
sist of the sentential calculus and a smaller or greater part of the
functional calculus as previously outlined. [3, page 37].

And it is:
[. . . ] essentially the same for all the different specific calculi, it is
customary not to mention it at all but to describe only the specific
part of the calculus. [3, page 38].

– The non-logical part contains terms specific to the subject matter of the
theory, as Carnap explains:

The specific partial calculus does not usually contain additional
rules of inference but only additional primitive sentences, called
axioms. [. . . ] What usually is called an axiom system is thus the
second part of a calculus whose character as a part is usually not
noticed. [3, page 37–38].

Later in the same section he also writes:

16 For a discussion of Frege’s constraint see, for instance, [51].
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An axiom system contains, besides the logical constants, other con-
stants which we may call its specific or axiomatic constants. [3, page
38].

A system of semiformal, semi-interpreted axioms plays an explicative role
if there is a straightforward manner of interpreting its logical and non-logical
terms. Logical terms are most frequently interpreted in – as Carnap calls it –
a “normal” way.

Not only is a basic logical calculus tacitly presupposed in the customary
formulation of an axiom system but so also is a special interpretation
of the logical calculus, namely, that which we called the normal inter-
pretation. [3, page 38].

Non-logical terms in axiomatic systems are interpreted explicitly through se-
mantical rules and explicit definitions using primitive signs and logical signs.

Some of [the specific or axiomatic constants] are taken as primitive; oth-
ers may be defined. The definitions lead back to the primitive specific
signs and logical signs. An interpretation of an axiom system is given
by semantical rules for some of the specific signs, since for the logical
signs the normal interpretation is presupposed. If semantical rules for
the primitive specific signs are given, the interpretation of the defined
specific signs is indirectly determined by these rules together with defi-
nitions. But it is also possible — and sometimes convenient, as we shall
see – to give the interpretation by laying down semantical rules for
another suitable selection of specific signs, not including the primitive
signs. If all specific signs are interpreted as logical signs, the interpreta-
tion is a logical and L-determinate17 one18; otherwise it is a descriptive
one. (Every logical interpretation is L-determinate; the converse does
not always hold.) [3, page 38].

As I said earlier, there are several ways in which a semiformal, semi-
interpreted axiomatic system can be formalized. In order to exhibit an ex-
plicative power, an axiomatic system needs to be formalized in such a way
that there is an interpretation of its non-logical terms that points out the
objects targeted at the stage of clarification.

Carnap (1950 [7]) illustrates the difference between an explicating semi-
formal, semi-interpreted axiomatic system and a non-explicating one with the

17 “We call a sentence of a semantical system S (logically true or) L-true if it is true in
such a way that the semantical rules of S suffice for establishing its truth. We call a sentence
(logically false) or L-false if it is false in such a way that the semantical rules suffice for
finding that it is false. The two terms just defined and all other terms defined on their basis
we call L-semantical terms. If a sentence is either L-true or L-false, it is called L-determinate,
otherwise (L-indeterminate or) factual.” (Carnap 1939 [3, page 13]).
18 The class of descriptive signs are “those which designate things or properties of things”;

the class of logical signs “serve chiefly for connecting descriptive signs in the construction
of sentences but do not themselves designate things, properties of things, etc. Logical signs
are, e.g., those corresponding to English words like “is”, “are”, “not”, “and”, “or”, “if”,
“any”, “some”, “every”, “all”.” (Carnap 1939 [3, page 7]).
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example of arithmetic. He considers – respectively – Peano Arithmetic (PA)
and Frege Arithmetic (FA). Peano’s axioms account for the behaviour of basic
arithmetical functions (i.e., successor, addition, multiplication) and it is only
of further concern, on which mathematical entities these functions are defined.
Clarification in the case of PA aims at explaining behaviour and mutual rela-
tions between elements of the natural number progression and not individual
properties of these elements. Since various progressions of different mathemat-
ical entities satisfy these axioms, PA does not – according to Carnap – enable
us to single out any specific interpretation of arithmetical terms and, in conse-
quence, it does not provide an explication of the concept of natural number. It
rather belongs – says Carnap – to the logical or proof-theoretic part of the the-
ory. By contrast, Frege’s axioms are formulated in such a way that individual
mathematical entities are targeted already at the stage of clarification. The
formalization of Frege’s axioms opens up a natural way of identifying arith-
metical terms with cardinalities of finite sets and, in consequence, enables an
explication of the concept of natural number.

The third type of axiomatic system that Carnap indicates is a fully in-
terpreted axiom system of the traditional kind, called also by many authors:
material axioms. In such a system the stage of interpretation precedes the
stage of formalization. All the symbols – logical or not – are assumed to be
explicated or have definite meanings in advance. This axiomatisation does not
play a role of an explication, with any explicative role played by explicit def-
initions used to define the non-logical terms beforehand. For instance, in the
case of Euclidean geometry – the paradigmatic example of a material axioma-
tisation – primitive axiomatic terms “point”, “line” and “plane” are explicitly
defined in the first place, and only then axioms regulating their behaviour are
introduced. This is most probably the reason why Carnap does not pursue any
discussion of the explicative power of material axiomatisations in his 1950.

According to Carnap, only semiformal, semi-interpreted axiomatic systems
can – if carefully formalised – play a role of an explication. The main point
of what I earlier called “Carnap’s implicit objection” refers precisely to the
necessity of carefulness in formalization. In order to determine which gen-
eral features an axiomatic system should possess in order to have explicative
power, it is crucial to understand the difference between explicating and non-
explicating systems. In the next section, I will follow Carnap’s example and
go through the details of how PA and FA differ in this respect.

4 Carnap’s implicit objection and arithmetic

Carnap ascribes explicative power only to those semiformal, semi-interpreted
axiomatic systems that formalise a mathematical concept already explicitly
targeted already at the stage of clarification. Only then – he claims – can the
non-logical symbols be interpreted in such a way that the axiomatic system
indeed explicates this concept. Carnap illustrates the difference between an ex-
plicating and a non-explicating semiformal, semi-interpreted axiomatic system
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by discussing axiomatisations of the concept of natural number from the end of
the XIX century: Second-Order Peano Arithmetic19 and Frege Arithmetic. He
claims that the first of them does not explicate the concept of natural number,
whereas the second perfectly fulfils all the criteria required from a successful
explication of this concept. In this section, I analyse Carnap’s example to un-
derstand which features of a semiformal, semi-interpreted axiomatic systems
confer explicative power. On this basis I will assess the explicative power of
the axiomatic system of recursion theory.

The idea that Frege’s account of natural numbers is an exemplary explica-
tion appears in various places where Carnap presents his method. Lavers (2013
[30]) suggests that Carnap strongly believed that Frege’s project did not only
achieve a successful explication of the concept of natural number, but that
the whole of Frege’s endeavor can be reconstructed as an exemplary explica-
tion process. Indeed, Carnap shows great enthusiasm for Frege’s project, for
instance when he says in Logical Foundations of Probability (1950 [7]):

The first exact explications for the ordinary arithmetical terms have
been given by G. Frege and later in a similar way by Bertrand Russell.
Both Frege and Russell give explicata for the arithmetical concepts
by explicit definitions on the basis of a purely logical system whose
primitive terms are presupposed as interpreted. On the basis of this
interpretation of the arithmetical terms, Peano’s axioms become prov-
able theorems in logic. It is a historically and psychologically surprising
fact that this explication was such a difficult task and was achieved so
late, although the explicanda, the elementary concepts of arithmetic,
are understood and correctly applied in every child and have been suc-
cessfully applied and to some extent also systematized for thousands of
years. [7, page 17].

Or, when he states in his Introduction to Symbolic Logic and Its Applications
(1958 [8]):

the concept of the inductive cardinal numbers [. . . ] is an explicatum for
the concept of finite number that has been widely used in mathematic,
logic and philosophy, but never exactly defined prior to Frege. [8, page
2].

Similarly, the same idea guides his reply to Strawson on linguistic naturalism
(1963 [9]):

With respect to the numerical words ‘one’, ‘two’, etc. [f]or thousands
of years many people used these words adequately for all practical pur-
poses, and for several centuries the mathematicians have had a system-
atically constructed theory involving these words. But even in this case,
complete clarity was lacking. Before Frege, nobody was able to give an

19 The fact that Carnap means rather PA2 and not PA1 is confirmed by what Carnap
writes while explaining what he means by Peano’s axioms in his other writings, eg., 1939 [3,
SS17].
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exact account of the meanings of these words in non-arithmetical terms.
[. . . ] Therefore we have to say that in spite of practical skill in usage,
people in general, and even mathematicians before Frege, were not com-
pletely clear about the meaning of numerical words. [9, page 935].

This is not the place to assess Frege’s intentions; Lavers [30] subjects Frege’s
intentions to close scrunity20, what I am interested in is Carnap’s reconstruc-
tion of Frege’s account. In what follows, I will indicate those passages from
Carnap where he refers to Frege’s account in terms corresponding to different
parts of the explication process, which I identified in section 1.

The first step of this process is the clarification of the explicandum. Car-
nap sees Frege’s declared objective in explicating the following prescientific
concept:

the ordinary meaning of the word ‘three’ as it appears in every-day life
and in science (Two Concepts of Probability, 1945 [5, page 513])

or

the concept of finite number that has been widely used in mathematics,
logic and philosophy (Introduction to Symbolic Logic and Its Applica-
tions, 1958 [8, page 2]).

An explication always has a specific structure, consisting of “the transfor-
mation of an inexact, prescientific concept, the explicandum, into a new exact
concept, the explicatum” [7, page 3]. It also involves indicating a domain within
which the explicatum will be formulated. The concept of natural number shall,
according to Carnap, to be explicated – as Frege wanted – in the context of set
theory, where natural numbers are identified with finite cardinals. To explicate
“three” Carnap recalls:

the definition of the cardinal number three [formulated] by Frege and
Russell as the class of all triples. [5, page 513].

The second step of the explication process is the specification of the ex-
plicatum. Specification aims, most importantly, at a specific scientific context
and is to be expressed using the part of the scientific language belonging to
this context. Carnap thinks that in the context of set theory the explicata of
individual numerical concepts are achieved by appealing to logical language.
For instance, the concept of “three” is achieved by:

the concept of the class of all triples [which is] defined not by means
of the word ‘triple’ but with the help of existential quantifiers and the
sign of identity [. . . ]. [5, page 513].

He also says:

20 It is surprising that Lavers (2013 [30]), in his paper devoted to Carnap’s justification of
Frege’s definition of natural number as explication, never refers to [7] where Frege’s definition
and Peano’s axioms are contrasted, and never mentions Carnap’s explicit rejection of Peano’s
axioms as explications.
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By Frege’s explication of the numerical words, which I regard as one of
the greatest philosophical achievements of the last century, the logical
connection between these words and logical particles like ‘there is’, ‘not’,
‘or’, and ‘the same as’ became completely clear for the first time. [9,
page 935].

This is for Carnap “the first exact explication for the ordinary arithmetical
terms” and “[i]t is a historically and psychologically surprising fact that this
explication was such a difficult task and was achieved so late” [7, page 17].

Carnap explicitly rejects Peano Arithmetic as explicating the concept of
natural number. The way in which Peano’s axioms are formalized does not
correspond to the clarification stage where natural numbers were targeted.
Therefore, there exists no single intended interpretation that could be priori-
tized at the interpretation stage.

Peano’s axiom system, by furnishing the customary formulas of arith-
metic, achieves in this field all that is to be required from the point of
view of formal mathematics. However, it does not yet achieve an expli-
cation of the arithmetical terms ‘one’, ‘two’, ‘plus’, etc. In order to do
this, an interpretation must be given for the semiformal axiom system.
There is an infinite number of true interpretations for this system, that
is, of sets of entities fulfilling the axioms, or, as one usually says, of
models for the system. One of them is the set of natural numbers as
we use them in everyday life. But it can be shown that all sets of any
entities exhibiting the same structure as the set of natural numbers in
their order of magnitude – in Russell’s terminology, all progressions –
are likewise models of Peano’s system. From the point of view of the
formal system, no distinction is made between these infinitely many
models. However, in order to state the one interpretation we are aim-
ing at, we have to give an explication for the terms ‘one’, ‘two’, etc., as
they are meant when we apply them in everyday life. [7, page 17].

In this passage, Carnap claims that there is no distinguished interpretation
of non-logical symbols of Peano Arithmetic that would single out a unique
model satisfying Peano’s axioms. On the contrary, there always exist many
possible interpretations, due to the fact that Peano’s axioms explicate the
behaviour of individual mathematical objects named by arithmetical terms,
but do not explicate terms themselves. In different words, Peano Arithmetic
explicates relations between natural numbers, but it neither explicates what
individual natural numbers are, nor explicates characteristics of the objects
forming the class of natural numbers.

Carnap’s understanding of the concept of natural number is no doubts
convergent with the Fregean one. However, assuming the state of knowledge
today, this is not the only possible understanding, and there is a way to argue
that Second Order Peano Arithmetic is actually one of the possible alternative
explications. It seems to me – and I agree here with Lavers [30] – that Carnap,
unlike Frege, would be open to accept other explications of the concept of
natural number formulated in different scientific contexts.
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Consider the claim that numbers are objects. Carnap would see intro-
ducing the numbers as objects as one possible way to give a system-
atic account of arithmetic. However, Carnap might also see introducing
an axiom of infinity and then associating numbers with second order
properties as another way to accomplish the same goal. The decision
between these options Carnap might treat as arbitrary. But once a de-
cision is taken here this does not make the propositions of the chosen
system subjective, or dependent on us, or merely linguistic. It is no the
objectivity of arithmetic that separated Frege and Carnap. What sep-
arated them was Frege’s belief that anyone who attempted the same
goal – providing a systematic account of arithmetic – would have to
make essentially the same pragmatic choices as he did. Carnap, how-
ever, would understand Frege as holding this view because of the lack,
at the time, of any alternative equally systematic treatment of number.
Carnap would, that is, see Frege’s fault as being too far ahead for his
time, and not as being metaphysically misguided. [30, page 240].

Indeed, Carnap himself recognized that Peano’s and Frege’s arithmetics
have different expressive powers. Peano’s axioms enable the expression of infor-
mation about structural properties of the natural number progression, whereas
Frege’s axioms allow us to speak of individual numbers. As Carnap puts it:

It is important to see clearly the difference between Peano’s and Frege’s
systems of arithmetic. Peano’s system, as mentioned, does not go be-
yond the boundaries of formal mathematics. Only Frege’s system en-
ables us to apply the arithmetical concepts in the description of facts;
it enables us to transform a sentence like ‘the number of fingers on my
right hand is 5’ into a form which does not contain any arithmetical
terms. Peano’s system contains likewise the term ‘5’, but only as an
uninterpreted symbol. It enables us to derive formulas like ‘3 + 2 = 5’,
but it does not tell us how to understand the term ‘5’ when it occurs
in a factual sentence like that about the fingers. Only Frege’s system
enables us to understand sentences of this kind, that is to say, to know
what we have to do in order to find out whether the sentence is true or
not. [7, 17–18].

The idea that axiomatic systems understood as implicit definitions can
be used as explications of mathematical concepts dates to Gergonne’s pa-
per from (1818 [22]), however it took till 1965 and the paper by Benacerraf
“What Natural Numbers Could Not Be” [1], where the author argues against
Frege-Russell view of numbers as objects, and the subsequent “structuralist
turn”, that it made its way to the mainstream. According to mathematical
structuralism Peano’s axioms explicate when the concept of natural number
is targeted in clarification and it is assumed that what clarifies this concept
are structural properties between natural numbers. Since mathematics is –
according to mathematical structuralism – a science of structures, and every
progression is an equally good representation of natural numbers and natu-
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ral numbers are adequately defined by PA2.21 Unlike in Carnap’s time, when
many remained sceptical of the expressiveness of implicit definitions, today
structuralism is one of the most studied positions in philosophy of mathemat-
ics. In consequence, PA2 is considered to be as successful explication of the
concept of natural number as the one proposed by Frege.

The endeavour of explaining what is crucial for constructing an explicating
semiformal, semi-interpreted axiomatic system guided me back towards the
question of the explicative power of Church’s thesis. In section 2, I showed
that it satisfies all the requirements on a Carnapian explication. What remains
to be done in section 5, is to verify that there is a way to overcome Carnap’s
implicit objection, which means, a way to find a clarification that motivates
the formalization.

5 Multiplicity of clarifications of computability

The possibility of accepting a multiplicity of clarifications for one concept
closely corresponds to Carnap’s ideal of scrutinizing the language of science
relative to various scientific frameworks.22 Accordingly, the same intuitive or
presystematic concept can be clarified, and then explicated, in different man-
ners depending on the context. Earlier in this paper, I indicated two possible
clarifications of the concept “natural number”: the first, within set theory, as
cardinalities of collections, further formalised with use of purely logical tools23;
the second, from a structuralist perspective, as a sequence of elements that can
be identified by their relational dependencies, again, formalised with purely
logical tools24 as an implicit definition. The first clarification was strongly sup-
ported by Carnap, whereas he did not considered the second at all. Moreover,
Carnap explicitly opposed the idea that “natural numbers” can be explicated
with an implicit definition that does not distinguish between various progres-
sions of discrete elements. However, as I suggested in the previous section,
Carnap operated before mathematical structuralism became mainstream in
philosophical thinking, and there is no reason to think that he would refrain
from accepting the second clarification today.

In this section, I investigate the possibility of finding a clarification, or
clarification, of the intuitive concept of computability that could justify for-
malization by using the axioms of recursion theory.

Discussions about what was a correct clarification of the concept of com-
putability were vivid from the very beginning of search for the formalization of

21 In general, according to Shapiro’s structuralism (1991 [42]), any coherent second-order
theory (which is categorical, i.e., all its models are isomorphic) adequately defines a math-
ematical structure.
22 I will not be exploring this path any further, but it is worth noting that this inclusive

attitude is certainly related to Carnap’s conventionalist understanding of language. See also,
[49].
23 Frege’s understanding of which tools are “logical” is obviously debatable, but not nec-

essary for my argument.
24 Again, I will not enter the discussion.
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this concept. Gödel famously criticized Church’s original explication of com-
putability based on the λ-calculus and his criticism was mainly directed at
the clarification of the explicandum. As reported by Church himself in a letter
to Kleene (dated November 29, 1935, but referring presumably to events from
1934):

In regard to Gödel and the notions of recursiveness and effective cal-
culability, the history is the following. In discussion [sic] with him the
notion of lambda-definability, it developed that there was no good def-
inition of effective calculability. My proposal that lambda-definability
be taken as a definition of it he regarded as thoroughly unsatisfactory.
I replied that if he would propose any definition of effective calcula-
bility which seemed even partially satisfactory I would undertake to
prove that it was included in lambda-definability. His only idea at the
time was that it might be possible, in terms of effective calculability
as an undefined notion, to state a set of axioms which would embody
the generally accepted properties of this notion, and to do something
on that basis. Evidently it occurred to him later that Herbrand’s def-
inition of recursiveness, which has no regard to effective calculability,
could be modified in the direction of effective calculability, and he made
this proposal in his lectures. At that time he did specifically raise the
question of the connection between recursiveness in this new sense and
effective calculability, but said he did not think that the two ideas could
be satisfactorily identified “except heuristically.” [14, page 9].

As suggests Sieg [44], against Davis [14], Church himself was skeptical
regarding explication of effective calculability by λ-definability.

The fact that the thesis was formulated in terms of recursiveness indi-
cates also that λ-definability was at first, even by Church, not viewed
as one among equally natural definitions of effective calculability: the
notion just did not arise from an analysis of the intuitive understanding
of effective calculability. [44, page 157].

It is also a well-known fact that Gödel believed that Turing’s approach to
computability was much more convincing, because it was aiming at Gödel’s
notion of absolute computability, or – in different words – computability inde-
pendent of the formal system for which it is defined.

In this paper, I claim that there can exist more than one clarification of the
intuitive concept, that leads to its adequate explication. It is also possible that
multiple clarifications support use of the same formalization in the explication
of the given concept. This is actually the case of the axioms of recursion theory
in the context of Church’s thesis.

Like any other semiformal, semi-interpreted axiomatic system, the axioms
of recursion theory need a strategy to overcome Carnap’s implicit objection.
Overcoming Carnap’s implicit objection requires pointing out such a clarifica-
tion and such a context of formalization that provides a justification for use of
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an implicit definition. For the case of Church’s thesis, I will indicate two pos-
sible clarifications of the intuitive or presystematic concept of computability
that are successfully captured by the formal concept of recursive function. The
first clarification states that intuitive computability corresponds to the class
of computable functions on natural numbers, the second states that intuitive
computability corresponds to a domain-independent procedural understanding
of effective computation. As Sieg (1997 [44]) points out, both were considered
by Church. Sieg, while reconstructing Church’s conceptual analysis of the con-
cept of effective computability, suggests that Church’s approach changed from
the original material interpretation, towards a “step-by-step” procedural in-
terpretation of recursion.

The two clarifications of the concept of computability that enable the ax-
ioms of recursion theory to overcome Carnap’s implicit objection correspond
exactly to those two ways in which one can look at the system of recursive
functions. Firstly, the axioms of recursion theory can be seen as accounting
for certain feature of a certain class of functions defined on natural numbers,
namely computability, or more precisely constructive definability that is able
“to represent any particular constructively defined function of positive integer
whatever”. I accounted for this approach while introducing Church’s original
motivation for formulating his thesis.

Under the first understanding, the theory of recursive functions relies on
the concept of natural number adopted as primitive, or adequately defined
beforehand. Therefore, the explication targets a specific class of functions de-
fined on a specific domain, and achieves this objective in a successful way. The
concept of effectively computable is clarified by the concept of a computable
function on natural numbers. In consequence, Carnap’s implicit objection is
obviously easily avoidable.

The fact that the theory of computation is always domain dependent is of-
ten seen as a drawback. This is exactly what Gödel objected to Church’s thesis
while calling for absoluteness of the concept of computation. Today we know
that even the model of computation favoured by Gödel, namely Turing’s one,
is strictly dependent on the domain (entities that can be the subject of compu-
tations).25 What makes an important intensional difference between the two
models is the starting point of clarifying the intuitive concept of computation.
Church, at least initially, was interested in characterising a class of computable
functions on natural numbers, whereas Turing was aiming at formalising effec-
tive procedures and wanted to explicate computability as minimal processes
that can be carried by an idealised human computer.

The procedural approach is most often associated with Turing’s account26,
however, when Sieg [44] reconstructs Church’s analysis of computability, he
indicates that even if Church’s first motivation was “quasi-empirical” (tar-

25 There exist strong arguments that that, in general, computability and an ω-progression
are tightly related. See [24] and [35].
26 It is apparent in both, his work on Entscheidungsproblem and his work on the con-

cept of calculation in a logic. I am grateful to an anonymous reviewer for directing my
attentiontowardon the latter.
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geting the idea of representability of computable functions in arithmetic), it
gradually (under the influence of Gödel and Turing) became more oriented
towards capturing what the minimal constructive steps that can be performed
on natural number are, and which functions are the constructive ones.

Under this second understanding, the theory of recursive functions belongs
to the framework of uninterpreted axiomatic systems where no definition of
non-logical symbols is given in explicit manner. In consequences, all interpre-
tations of terms and functions are relative to the model and it opens up a pos-
sibility of studying computations as pure procedures in a domain-independent
manner. It corresponds to the idea, explored increasingly often, that the ax-
ioms of recursion theory can be studied from the contemporary model theoretic
perspective as one of many entwined axiomatic systems. This is strictly related
to a procedural understanding of effective computation. It would be an over-
statement to say that Church himself fully abstracted from natural numbers,
but one can risk a thesis that its continuation can be seen in model-theoretical
skepticism, that today is a widely studied position in philosophy ([34], for
overview see [15]).

Whichever line of defence we chose, recursion theory is saved in its role of
explicating the intuitive concept of computability. Moreover, the possibility of
providing different clarifications of computability for different scientific con-
texts is a good thing for those authors, quoted in the introductory part of this
paper, who advocate distinguishing Church’s thesis from Turing’s thesis.

6 Conclusions

In this paper, I examined the idea that Church’s thesis is an explication in the
Carnapian sense. I claimed that a positive answer to this inquiry necessitates
not only a successful verification of Carnapian requirements, but that clarifi-
cation of computability needs to explicitly aim at the intended interpretation
of the non-logical symbols of the axioms of the theory of recursion.

Therefore, my first assignment was in understanding the role of “the clar-
ification of the explicandum” in the case of an axiomatic semiformal, semi-
interpreted system. I relied on Carnap’s own example, namely axiomatic ac-
counts of natural numbers. According to Carnap, when the concept of natural
number is clarified by Frege-Russell understanding of natural numbers, and
explicated by a semiformal, semi-interpreted axiomatic system that targets
accounting for these (by Frege Arithmetic), this system fulfils the require-
ments of an explication. By contrast, Peano’s semiformal, semi-interpreted
axiom system cannot be used as an explication of the concept of natural num-
ber, because individual constants and other denoting arithmetical terms will
always lack an explicit interpretation in that system.

However, as I also argued, from a structuralist perspective Carnap’s judg-
ment on Peano Arithmetic seems unnecessarily restrictive. A structuralist
thinks of the natural numbers not as individual mathematical entities, but
as positions in a structure. This idea can be combined with the observations
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that PA2, while being a semiformal, semi-interpreted system, is categorical: all
models that satisfy the axioms share the same standard structure. The struc-
turalist could now argue that while PA2 is not itself an interpreted system,
in the sense that the denoting terms are given explicit interpretations, it still
singles out a particular structure in this more abstract sense. It is a natural
next step to think that the intuitive concept of natural number can be “expli-
cated” in terms of this abstract structure singled out by the axioms of PA2:
“one” denotes the first position, “two” the second, and so on. For in this way,
we achieve a “transformation of an inexact, prescientific concept . . . into a new
exact concept . . . ”, which is Carnap’s own high-level description of what ex-
plication is all about [7, page 3]. In this sense, a semiformal, semi-interpreted
axiom system can – contrary to what Carnap writes – achieve an explication
so long as that axiom system is categorical and we adopt a suitable version of
structuralism in mathematics.

The same line of reasoning can be applied to recursive functions: in order
to defend them as explicating one needs to find a suitable clarification. In this
paper I suggested two possible ways of proceeding. Firstly, Church’s thesis,
as it is originally stated, is embedded in number theory and hence the model
of its interpretation is fixed from the beginning in a way which straightfor-
wardly satisfies Carnap’s criteria for a good explication. Secondly, I observe
that thanks to the emergence of mathematical structuralism and of model-
theoretic scepticism as full-fledged paradigms for clarification of mathematical
concepts, many semiformal, semi-interpreted axiomatic systems, including re-
cursion theory or Peano Arithmetic, can be seen as explicating.

In consequence, in this paper I shed an additional light on what Carnap is
actually saying in his most important text on explications, about semiformal,
semi-interpreted axiomatic systems and the reasons for which they can or
cannot play the role of an explication. Under my understanding, Carnap claims
that such systems explicate only when explicandum is clarified in a way that it
enables such a formalization that the intended interpretation of the non-logical
predicates, placeholders of explicata, is straightforward. I observe that this is
very close to Frege’s foundational principle, the – so called – Frege’s constraint
according to which any successful foundations of a mathematical theory must
explicitly account, even at the most fundamental level (e.g., axiomatic), for
applications of the entities forming the intended model of this theory.
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31. Machover, Moché (1996), Set Theory, Logic and their Limitations. Cambridge University
Press.

32. Mendelson, Elliott (1990), Second Thoughts about Church’s Thesis and Mathematical
Proofs. The Journal of Philosophy 87 (5): 225–233.
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