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Abstract. The main objective of this paper is to design a common back-
ground for various philosophical discussions about adequate conceptual
analysis of “computation”.
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1 Introduction: Circularity in the definition of
computability

The core of the problem discussed in this paper is the following: the Church-
Turing Thesis states that Turing Machines formally explicate the intuitive con-
cept of computability. The description of Turing Machines requires description of
the notation used for the input and for the output. The notation used by Tur-
ing in the original account and also notations used in contemporary handbooks
of computability all belong to the most known, common, widespread notations,
such as standard Arabic notation for natural numbers, binary encoding of nat-
ural numbers or stroke notation. The choice is arbitrary and left unjustified. In
fact, providing such a justification and providing a general definition of nota-
tions, which are acceptable for the process of computations, causes problems.
This is so, because the comprehensive definition states that such a notation or
encoding has to be computable. Yet, using the concept of computability in a
definition of a notation, which will be further used in a definition of the concept
of computability yields an obvious vicious circle.

This argument appears in discussions about what is an adequate or correct
conceptual analysis of the concept of computability. Its exact form depends on
the underlying picture of mathematics that an author is working with. My ob-
jective in this paper is, firstly to discuss various versions and aspects of this
problem, and then, secondly, to point towards possible solutions, both those
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proposed explicitly, and these which are relevant for us only implicitly, because
they target some disguised version of the problem. Finally, I will indicate related
topics and formulate some ideas arising from this discussion.

2 Background: Philosophical framework and terminology
clarification

It was Gödel’s ambition to explicate the concept of “absolute” computation, that
is a computation which is not formulated for a particular domain. However, all
know today explications of computability refer to some sort of ω-progression.
Philosophical investigations into the concept of natural number, and its use as
basis for analysis of the concept of computation, involve – more or less explicitly
– one or both layers:

1. the syntactical layer of numerals and
2. the semantical layer of abstract natural numbers.

A denotation δ maps the elements from one layer to the elements of the other
layer. See [16].

The syntactical layer of numerals consists of a sequence of inscriptions sus-
ceptible to be subjected to computational manipulations. Various syntactical
systems have different syntactical properties. A priori, without an interpreta-
tion, a sequence of random inscriptions is as good as a binary notation based
on recursive combinations of zeros and ones. At the semantical layer natural
numbers are always understood as some sort of abstract entities. It does not
belong to the current endeavor to analyze all possible modalities of existence
of abstract natural numbers, neither to decide, which of these modalities is the
correct one. That would complicate the picture unnecessarily. However, in order
to mark the ground, let me say that you can think of variety of things starting
from types of inscriptions, conceptual content associated with numerals in the
process of learning, cognitive content issued from the empirical experience, a sys-
tem of mental representations or Platonic ideas remaining in the Platonic world
of ideas. The denotation function matches numerals from the syntactical layer
with natural numbers from the semantical one, so denotation is a cross-modal
function, mapping physical inscriptions on abstract objects.

Computations can be defined on the syntactical layer, or semantical layer or
on both of them combined. Functions from syntactical layer are called string-
theoretic functions, functions from semantical layer are called number-theoretic
functions.

This picture was explicitly proposed by [16] and, in a more or less implicit
manner, appears in various other papers studying philosophical correlations be-
tween computability and natural numbers of such authors as [1], [1996] or [15].
The terminology that various authors use differ from one account to another.
My very first objective in this paper is to clarify the basic vocabulary.

Three notions come back in accounts of deviations related to the concept of
computability are the following: “notation”, “encoding” and “semantics”.
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For instance, when it comes to “notation”, in his paper entitled “Acceptable
notation” [16] calls “notation” a syntactic sequence of numerals together with
a denotational function. This is definitely more handy in his context, as he
considers only computable sequences of inscriptions. Shapiro’s concern consists
in defining adequate ways of associating those sequences with semantics in such
a way that string-theoretic functions have clear number-theoretic counterparts.
[4] by “notation” mean the triple: a sequence of inscriptions with a denotation
function and the standard semantics. One notation differs from another one
by syntactical features of the sequence of inscriptions. In this paper, I speak
of notation in the context of purely syntactical layer of inscriptions. I speak
of notation with denotation function or notation with interpretations when I
introduce other layers.

When the full picture (all layers) is in place, I call “deviant encodings” devi-
ations that happens on the syntactic level; I call “deviant semantics” deviations
that happens on the semantic level; finally I call “unacceptable denotation func-
tion” deviations of the denotation function.

I divide the discussion in this paper to three general perspectives:

– I make an attempt to talk about numerals without any reference to natural
numbers formulating a purely syntactical version of the problem;

– I reflect on what happens when one starts associating names with abstract
objects, and in this context I look at the denotation function;

– I look at those realistic positions where abstract objects are taken as existing
before being named.

3 The lightest shade of the problem: Purely syntactical
approach

The general presentation of the problem, proposed at the beginning of this paper,
addresses the syntactical version of the issue. In this version, computations are
understood as manipulations of inscriptions, functions on inscriptions are string-
theoretic functions, etc. This version is easily conceptualised in the context of
a machine. When a human agent is involved at any stage the computational
process, there exists at least a theoretical possibility that purely mechanical
computations exist.1

The problem in its purely syntactical version can be formulated as follows. In
a definition of Turing computability, one of the aspects that needs to be clarified
is the characterization of notation that can be used as an input for a machine
to process. If a Turing Machine is supposed to explicate the intuitive concept
of computability it is necessary to explain, which sequence of numerals can be
used as an input without the use of the concept of computability. That means,
we cannot simply say: “sequences that can be used as input are the computable
ones” as we have not yet defined what means “to be computable”.

1 It might be claimed that humans always associate some meaning with symbols.



4 P. Quinon

Study of symbol manipulation as a mathematical endeavor has its place in
history of philosophy. A clear distinction between syntax and semantics dates
from [17]. In a different context, [6] designs methods to deal with a purely syn-
tactical calculus. [10] introduced philosophical problems related to the rejection
of all abstract entities.

To understand this situation better, ask this question: what one could tell
the Skeptic, who thinks that there is no way of distinguishing an acceptable
notation from an unacceptable one?

3.1 Nominalist Platonism solution: Syntactic entwining

One could tell the Skeptic that sequences of inscriptions exist and are free of
interpretations independently of human beings apprehending them. However,
even if we cannot see that from our earthy perspective, there is something specific
about certain sequences of inscriptions. Some of the sequences are computable.
Hence, this primarly nominalistic position has a Platonist dimension. I call it
“Platonist Nominalism”2.

Imagine that, similarly to the librarians from the Library of Babel, described
by Borges - I am going to get back to the original Borges story a little bit later
- you wander in the land of inscriptions. You might be a robot equipped with
means to process sequences of inscriptions and after processing some of those
sequences you get an expected output. You can also imagine a “Chinese Room
world”3. In any of those cases, you have no means to formulate a general theoret-
ical law enabling you to distinguish processable sequences from non-processable
ones.

“Nominalist Platonism” faces similar problems as those encountered by con-
crete computations. Consider, for instance, presentation of concrete computa-
tions by [13].

In our ordinary discourse, we distinguish between physical systems that
perform computations, such as computers and calculators, and physical
systems that don’t, such as rocks. Among computing devices, we distin-
guish between more and less powerful ones. These distinctions affect our
behaviour: if a device is computationally more powerful than another,
we pay more money for it. What grounds these distinctions? What is
the principled difference, if there is one, between a rock and a calculator,
or between a calculator and a computer? Answering these questions is
more difficult that it may seem.

The difficulty for both, nominalist Platonism and concrete computations,
consists in distinguishing sequences of physical objects (inscriptions in the first

2 The name ”nominalist Platonism” has been used in a different context by George
Boolos in ”Nominalist Platonism”, Philosophical Review 94 (3):327-344 (1985). I do
not want to get into comparison here.

3 John Searle (1980), ”Minds, Brains and Programs”, Behavioral and Brain Sciences,
3 (3): 417457.
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case and whatever physical systems, in the second) that can play the role of sub-
jects of computations from those that cannot. We know the difference between
a rock and a computer, in as much the same way as we know the difference
between computable and non-computable sequences of inscriptions. We make a
difference between notations for natural numbers, random sequences of random
inscriptions, and even weird permutations of numerals.

However, when it comes to formulating an explanation of why is this so, there
is no easy way out. Nominalist Platonism suffers from a severe and incurable epis-
temological problem of the sort described in [2] in the context of full-blooded
Platonism: we always face a choice between realistic ontology and epistemological
access to abstract objects. It is not impossible to get both. “[S]omething must
be said to bridge the chasm, created by [...] [a] realistic [...] interpretation of
mathematical propositions... and the human knower, he writes. For prima facie
“the connection between the truth conditions for the statements of [our math-
ematical theories] and [...] the people who are supposed to have mathematical
knowledge cannot be made out.” [2, page 675], see also [7].

3.2 Analytic solution: The Turing Blank-Type Restriction and
Turing Notational Thesis

Some Skeptics will obviously not agree to accept the Nominalist Platonism solu-
tion and we shall not take it against them. The position is plausible and coherent,
but it is not philosophically very fruitful. The lack of epistemological access is a
strong and non fixable defect rendering Nominalist Platonism useless for every-
day reasonings, decision making and, most importantly, computational practice.

In this paper, I will recall a solution that has been proposed in the context
of computability. The answer that might help overcome Skeptics’ worries was
originally proposed by Turing and recently reevaluated by Copeland & Proudfoot
[8]. I will call it the “analytic solution”.

Copeland & Proudfoot reconstruct the way in which Turing implicitly guar-
antees that sequences of symbols that are processed by a machine are com-
putable. Computable sequences are subjects of two constraints.

Firstly, the Turing’s Blank-Tape Restriction: “If the [Turing] machine is sup-
plied with a blank tape and set in motion [. . . ] the subsequence of the symbols
printed by it which are of the first kind [i.e. binary digits] will be called the se-
quence computed by the machine. The real number whose expression as a binary
decimal is obtained by prefacing this sequence by a decimal point is called the
number computed by the machine” [18, page 232].

Secondly, Turing Notational Thesis: “Any job of work that can be done by
a human computer engaged in numerical calculation can be carried out equiva-
lently by a human computer employing Turing-unary notation.”

When these two constraints are put together, the sequence that is in the input
and the sequence that is in the output of the process are necessarily computable.
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4 The problem gets one shade darker: Numerals get
meanings

Let’s now imagine that the Skeptic is convinced by the arguments that one can
generate the sequence of inscriptions, - or, more precisely, of numerals - in such
a way that this structure is recursive. She can do it on a basis that she finds
the most convincing (social, cognitive, Blank-Type Restriction, etc.), it will not
play any role in my further reflections.

Now, let us assume that the Skeptic thinks that numerals have meanings,
but she refuses to rely on arbitrary choices of a “standard” notation, a “stan-
dard” denotation function, and a “standard” semantics. Instead, she asks for
providing her a way to distinguish acceptable notations from unacceptable ones.
In consequence, the problem of deviation extends to the semantical level.

4.1 Everyday solution: Arbitrary choice of notation and denotation

The solution commonly adopted in the real world is to take arbitrary decisions,
possibly based on social, cultural or cognitive reasons, of which notation and
which denotation to use. We simply use a commonly known, well-recognised
notation, whose denotation does not leave to us any doubts. This is the case
of [4]. When those authors introduce the question of changing notation they
narrow the problem to the practical issue of using rather one notation than
another. For instance, they say, “multiplying numbers given in decimal numerals
(expressing the product in the same form) is easier in practice than multiplying
numbers given in something like Roman numerals”. They also claim that “it is
possible in principle to do it in any other notation, simply by translating the
data from the difficult notation into an easier one, performing the operation using
the easier notation, and then translating the result back from the easier to the
difficult notation”, which means there is a computational translation between
the notations. Ideas of “deciphering” a notation and “the system now in common
use” show that, according to the authors, defining a notation require an external,
non-mathematical, non-formal, non-effective knowledge [4, page 24].

Indeed, when they define a Turing machine they say:

A Turing machine is a specific kind of idealised machine for carrying out
computations, especially computations on positive integers represented
in monadic notation.

There is no theoretical explanation that would justify the choice of one no-
tation together with a denotation function over another. One can, obviously, try
to justify the choice by saying that numerals are social creations that children
learn in social interactions or that there is a necessity of learning them in this
specific order because of cognitive process, but all these justifications go beyond
the theoretical and conceptual context, which is ours.
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4.2 Formal problem: Deviant encodings and deviant semantics

It is highly doubtful if any Skeptic gets convinced by an arbitrary argument.
There is no theoretical reason to favour one notation, accompanied by a denota-
tion, over another. In consequence, the “lacuna” remains, but at another level.
And here finally comes time to recall the story of the Library of Babel. Under
Jorge Luis Borges description [1941] “the Library is total and that its shelves
register all the possible combinations of the twenty-odd orthographical symbols
(a number which, though extremely vast, is not infinite). [. . . ] When it was pro-
claimed that the Library contained all books, the first impression was one of
extravagant happiness. All men felt themselves to be the masters of an intact
and secret treasure. [. . . ] As was natural, this inordinate hope was followed by
an excessive depression. The certitude that some shelf in some hexagon held
precious books and that these precious books were inaccessible, seemed almost
intolerable.”

The librarians usually know which books make sense and which do not. It is
ok if a copy contains typos. However, the librarians do not understand reasons
why some sequences are special. A priori, no one is able to tell the difference
between books that tell the stories from books containing illegible information.
Similarly, no one is able to tell the difference between sequences that are com-
putable from those that are not.

However, if no external justification is adapted, we fall once more into vicious
circle of a conceptual analysis. This type of deviations is a deviation of the
meaning associated to the denotation function. There is no formal way of defining
such a function without referring to the concept of computability. A traditional
way of presenting this problem is clearly visible on the example of the Semantical
Halting Problem introduced by [12] and discussed by [8].

The classical formulation of the Halting Problem, first described by [18] and
named by Davis [1958, pages 70–71], provides a negative reply to the question
of whether there exists a general procedure to decide if a given Turing Machine,
or more generally a given computer program, will eventually stop. The proof
goes by showing that assuming the opposite leads to contradiction. The classical
formulation uses some intended and arbitrary, recursive, notation with standard
semantics, e.g., Arabic notation with standard interpretations.

Formulating the Halting Problem in purely syntactical terms is not really
possible, because the input, even if purely syntactical, is being generated by a
recursive procedure of encoding Turing Machines. Each numeral stands for the
Turing Machines it encodes. Problems arise however, when semantical layer gets
involved in the Semantical Halting Problem.

The Semantical Halting Problem is a Skeptical issue of the same sort as
the problem of non-computable, but ω-ordered models of the first-order Peano
Arithmetic introduced by [11] and [14], and discussed by [5]. In the presentation
of the classical Halting Problem, machines are encoded in a standard way. The
Semantical Halting Problem opens up to the possibility of using deviant - non-
computable - encodings. Imagine, you have encoded Turing machines with some
standard encoding. Then, it is Funes de Memorious – a character from another
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Borges’ story – who inherits the job from you. He is not following any recursive
rules. Since his memory is infinite and he has trouble synthesising information,
he names subsequent machines by a random name, and symbolises by a random
inscription.

He told me that in 1886 he had invented an original system of numbering
and that in a very few days he had gone beyond the twenty-four-thousand
mark. [. . . ] In place of seven thousand thirteen, he would say (for exam-
ple) Máximo Pérez, in place of seven thousand fourteen, The Railroad ;
other numbers were Luis Melián Lafinur, Olimar, sulphur, the reins, the
whale, the gas, the caldron, Napoleon, Augustn de Veida. In place of five
hundred, he would say nine. Each word had a particular sign, a kind of
mark; the last in the series were very complicated... I tried to explain to
him that this rhapsody of incoherent terms was precisely the opposite
of a system of numbers. I told him that saying 365 meant saying three
hundreds, six tens, five ones, an analysis which is not found in the “num-
bers” The Negro Timoteo or meat blanket. Funes did not understand me
or refused to understand me.

Tapes with Funes encoding are subsequently given to the Halting Machine.
What then happens? The Halting Machine that processes encodings of Turing
Machines is designed to process information in an algorithmic manner. If inputed
with a given non-standard enumeration of Turing machines, the machine will
process those non-computable encodings as it were standard notation.

No one will, obviously, have the idea of encoding Turing Machines with a
non-standard encoding. However, the problem of distinguishing one encoding
from another is the same as it was in the case of purely syntactical version of
the problem. If “being computable by a Turing machine” is how computable is
defined, one cannot use the concept of being computable in the definition. Is
there any formal general way of distinguishing standard encodings from deviant
encodings?

4.3 Way out: Constraints on denotation function (Shapiro)

[16] defines computability on inscriptions and then searches for ways of constrain-
ing the denotation function in such a way that no uncomputable semantics can
be reached. The first constraint is that between the syntactic and the semantic
layer there is a bijection (one-to-one and onto). He shows then that the class
of number-theoretic functions which are computable relative to every notation
is too narrow, containing only rather trivial functions, and that the class of
number-theoretic functions which are computable relative to some notation is
too broad (containing, for example, every characteristic function [page 15]). Since
these constraints does not single out any standard notation, Shapiro introduces
human factor: “under normal circumstances, a person engaged in computation
is not merely following an algorithm. It is usually important, in particular, that
the computist know the number-theoretic goal of the algorithm” [page 18].
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4.4 Model-realistic solution: Model-theoretic entwining

Some Skeptics could feel disappointed by lack of a purely formal solution. What
Shapiro proposes is, in the end, human-based and handwavy. If this is the case,
the Skeptic might find some peace in a solution recently proposed by [9]. Dean
develops a model-theoretic realism for the concept of computation. He claims
that there is no point in trying to find external arguments to distinguish between
various standard and non-standard models of arithmetic, nor of recursive theory.
We should rather use the richness of the model-theoretic universe for studying
structural properties of the concept of computability.

5 The darkest shade of the problem: Computations
happen on abstract objects

There is finally another type of Skeptical worry. In his paper, [15] puts forward
the idea that a full account of computability necessitated to define both syntactic
and semantic computability. He then formulates a “crucial lacuna” indicating the
intrinsic impossibility of defining computability on inscriptions first, and then,
on its basis, computability on abstract numbers.

The lacuna states that in a realistic picture, when computations are defined
on inscriptions, that there is no non-circular way of defining what computability
on natural numbers is, if we want to take computability as first applying it to
strings of characters. Let me remind you, that in an epistemologically plausible
picture, computability on numbers as abstract objects is defined via notation.
In an “epistemologically plausible picture” abstract objects are approached via
language, and not via a private insight.

Rescorla’s objective is to give an account of what a number-theoretic com-
putability is. He works under three hypotheses, first, computability refers to
numbers via notation (via numerals and with help of denotation function);
second, Turing Machines manipulate syntactic entities; third, to specify which
number-theoretic function a Turing Machine computes, one must correlate these
syntactic entities with numbers. The problem is that the correlation must itself
be computable, otherwise the Turing machine would compute uncomputable
functions. And the circularity arises: if we propose the intuitive notion of com-
putable relation between syntactic entities and numbers, then our analysis of
computability is circular.

In consequence, Rescorla claims that computability needs to be defined as
a property of abstract objects and shall be defined as such. Computability on
abstract objects is defined via Church’s thesis with the axioms of the theory of
recursivity. This is where a Skeptic can be consoled again by the model-theoretic
entwinement proposed by [9].

5.1 Moderate realism solution: any old ω-sequence will do after all

In [3] – sequel to the famous [1] – the author takes a structuralist position and
claims that abstract objects playing the role of natural numbers in the structure
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do not need to form a recursive progression. According to Benacerraf, there is
no reason to proclaim computability of the series of abstract entities. This is so,
because it is always possible to enumerate these entities with a recursive series
of names. But, and here we get back to the beginning, how can we know which
sequences of numerals are actually recursive...

6 Conclusions

There is no final answer that will fully satisfy our Skeptics. Each analysis of
the concept of computation ends up in a vicious circle, it has a conceptual fixed
point and suffers from a diagonal problem. We should keep that in mind when
attempting to define computation and its twin concept of natural number.
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